np.random.seed(args.randseed) torch.manual_seed(args.randseed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False train_loader = dl.CIFAR10(train=True, augm_flag=False) val_loader, test_loader = dl.CIFAR10(train=False, val_size=2000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_SVHN = dl.SVHN(train=False) test_loader_LSUN = dl.LSUN_CR(train=False) delta = 10 if args.type == 'OE' else 1 ood_loader = dl.UniformNoise('CIFAR10', delta=delta, size=2000) def load_model(): if args.type == 'OE': model = resnet_oe.ResNet18(dataset='CIFAR10').gpu() else: model = resnet.ResNet18().cuda() model.load_state_dict( torch.load(f'./pretrained_models/CIFAR10_{args.type}.pt')) model.eval() return model
train=False, augm_flag=False, val_size=1000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() targets_val = torch.cat([y for x, y in val_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_SVHN, _ = dl.binary_SVHN(3, 9, train=False, augm_flag=False, val_size=1000) test_loader_LSUN = dl.LSUN_CR(train=False, augm_flag=False) ood_loader = dl.UniformNoise('CIFAR10', size=1000) noise_loader = dl.UniformNoise('CIFAR10', size=2000) def load_model(): model = resnet.ResNet18(num_classes=2).cuda() model.load_state_dict(torch.load(f'./pretrained_models/binary_CIFAR10.pt')) model.eval() return model tab_ood = { 'CIFAR10 - CIFAR10': [], 'CIFAR10 - SVHN': [], 'CIFAR10 - LSUN': [], 'CIFAR10 - FarAway': []
train_loader = dl.binary_SVHN(3, 9, train=True, augm_flag=False) val_loader, test_loader = dl.binary_SVHN(3, 9, train=False, augm_flag=False, val_size=1000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() targets_val = torch.cat([y for x, y in val_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_CIFAR10 = dl.CIFAR10(train=False, augm_flag=False) test_loader_LSUN = dl.LSUN_CR(train=False, augm_flag=False) ood_loader = dl.UniformNoise('SVHN', size=1000) noise_loader = dl.UniformNoise('SVHN', size=2000) def load_model(): model = resnet.ResNet18(num_classes=2).cuda() model.load_state_dict(torch.load(f'./pretrained_models/binary_SVHN.pt')) model.eval() return model tab_ood = { 'SVHN - SVHN': [], 'SVHN - CIFAR10': [], 'SVHN - LSUN': [], 'SVHN - FarAway': []
np.random.seed(args.randseed) torch.manual_seed(args.randseed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False train_loader = dl.SVHN(train=True, augm_flag=False) val_loader, test_loader = dl.SVHN(train=False, val_size=2000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_CIFAR10 = dl.CIFAR10(train=False) test_loader_LSUN = dl.LSUN_CR(train=False) delta = 10 if args.type == 'OE' else 1 ood_loader = dl.UniformNoise('SVHN', delta=delta, size=2000) def load_model(): if args.type == 'OE': model = resnet_oe.ResNet18(dataset='SVHN').gpu() else: model = resnet.ResNet18().cuda() model.load_state_dict( torch.load(f'./pretrained_models/SVHN_{args.type}.pt')) model.eval() return model
np.random.seed(args.randseed) torch.manual_seed(args.randseed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False train_loader = dl.MNIST(train=True, augm_flag=False) val_loader, test_loader = dl.MNIST(train=False, val_size=2000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_EMNIST = dl.EMNIST(train=False) test_loader_FMNIST = dl.FMNIST(train=False) delta = 10 if args.type == 'OE' else 1 ood_loader = dl.UniformNoise('MNIST', delta=delta, size=2000) def load_model(): model = MNIST_ConvNet() if args.type == 'OE' else LeNetMadry() model = model.cuda() model.load_state_dict( torch.load(f'./pretrained_models/MNIST_{args.type}.pt')) model.eval() return model tab_ood = { 'MNIST - MNIST': [], 'MNIST - EMNIST': [],
torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False train_loader = dl.binary_MNIST(3, 8, train=True, augm_flag=False) val_loader, test_loader = dl.binary_MNIST(3, 8, train=False, val_size=1000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() targets_val = torch.cat([y for x, y in val_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_EMNIST, _ = dl.EMNIST(train=False, val_size=len(test_loader.dataset)) test_loader_FMNIST, _ = dl.FMNIST(train=False, val_size=len(test_loader.dataset)) ood_loader = dl.UniformNoise('MNIST', train=False, size=1000) noise_loader = dl.UniformNoise('MNIST', size=2000) def load_model(): model = LeNetMadry(binary=True) model = model.cuda() model.load_state_dict(torch.load(f'./pretrained_models/binary_MNIST.pt')) model.eval() return model tab_ood = { 'MNIST - MNIST': [], 'MNIST - EMNIST': [],