'ACCUMULATION_STEPS': ACCUMULATION_STEPS, 'LEARN_RATE': LEARN_RATE, 'EPOCHS': EPOCHS, 'WARMUP_STEPS': WARMUP_STEPS, 'SEQUENCE_LENGTH': SEQUENCE_LENGTH, }, config_file, sort_keys=True, indent=4, separators=(',', ': ')) # Load and initialize model MODEL_CLASS = load_model(MODEL_PREFIX) TOKENIZER = MODEL_CLASS[0].from_pretrained(MODEL_NAME) CONFIG = MODEL_CLASS[1].from_pretrained(MODEL_NAME, num_labels=3) MODEL = MODEL_CLASS[2].from_pretrained(MODEL_NAME, config=CONFIG) # Load training data train_dataset = dataset( tokenize(chain(*(load_semeval(DATASET, 'train', lang) for lang in LANGS)), TOKENIZER, SEQUENCE_LENGTH)) train_sampler = RandomSampler(train_dataset) train_dataset = DataLoader(train_dataset, sampler=train_sampler, batch_size=TRAIN_BATCH_SIZE, drop_last=True) # Run Training training( train_dataset, val_datasets(TOKENIZER, SEQUENCE_LENGTH), MODEL, EXPERIMENT, LEARN_RATE, WARMUP_STEPS, TRAIN_BATCH_SIZE, EPOCHS, ACCUMULATION_STEPS )
'LEARN_RATE': LEARN_RATE, 'EPOCHS': EPOCHS, 'WARMUP_STEPS': WARMUP_STEPS, 'SEQUENCE_LENGTH': SEQUENCE_LENGTH, }, config_file, sort_keys=True, indent=4, separators=(',', ': ')) # Load and initialize model MODEL_CLASS = load_model(MODEL_PREFIX) TOKENIZER = MODEL_CLASS[0].from_pretrained(MODEL_NAME) CONFIG = MODEL_CLASS[1].from_pretrained(MODEL_NAME, num_labels=3) MODEL = MODEL_CLASS[2].from_pretrained(MODEL_NAME, config=CONFIG) # Load training data train_dataset = dataset( tokenize(chain(*(load_semeval(DATASET, 'train', lang) for lang in LANGS)), TOKENIZER, SEQUENCE_LENGTH)) train_sampler = RandomSampler(train_dataset) train_dataset = DataLoader(train_dataset, sampler=train_sampler, batch_size=TRAIN_BATCH_SIZE, drop_last=True) # Run Training training(train_dataset, val_datasets(TOKENIZER, SEQUENCE_LENGTH), MODEL, EXPERIMENT, LEARN_RATE, WARMUP_STEPS, TRAIN_BATCH_SIZE, EPOCHS, ACCUMULATION_STEPS)