예제 #1
0
	def __init__(self, **kwargs):
		"""Initialization.

		Args:
			debug (kwargs): boolean indicating debug mode
		"""
		self.debug = Debug("debug" in kwargs and kwargs["debug"])
		self.graph = []
예제 #2
0
    def __init__(self, **kwargs):

        self.debug = Debug("debug" in kwargs and kwargs["debug"])
        self.graph = []
예제 #3
0
def MLP():
    np.random.seed(13141)

    debug_mode = False
    dbg = Debug(debug_mode)

    parser = argparse.ArgumentParser(
        description='Train and test neural network on cifar dataset.')
    parser.add_argument('experiment_name',
                        help='used for outputting log files')
    parser.add_argument('--num_hidden_units',
                        type=int,
                        help='number of hidden units')
    parser.add_argument('--learning_rate',
                        type=float,
                        help='learning rate for solver')
    parser.add_argument('--momentum_mu',
                        type=float,
                        help='mu for momentum solver')
    parser.add_argument('--mini_batch_size', type=int, help='mini batch size')
    parser.add_argument('--num_epoch', type=int, help='number of epochs')
    args = parser.parse_args()

    experiment_name = args.experiment_name
    iter_log_file = "logs/{0}_iter_log.txt".format(experiment_name)
    epoch_log_file = "logs/{0}_epoch_log.txt".format(experiment_name)
    print
    timer.begin("dataset")
    DATASET_PATH = 'cifar-2class-py2/cifar_2class_py2.p'
    data = CifarDataset()
    data.load(DATASET_PATH)

    num_training = data.get_num_train()
    num_test = data.get_num_test()
    input_dim = data.get_data_dim()

    num_hidden_units = 50 if args.num_hidden_units is None else args.num_hidden_units
    learning_rate = 0.01 if args.learning_rate is None else args.learning_rate
    momentum_mu = 0.6 if args.momentum_mu is None else args.momentum_mu
    mini_batch_size = 64 if args.mini_batch_size is None else args.mini_batch_size
    num_epoch = (500 if not debug_mode else
                 1) if args.num_epoch is None else args.num_epoch

    print("num_hidden_units: {0}".format(num_hidden_units))
    print("learning_rate: {0}".format(learning_rate))
    print("momentum_mu: {0}".format(momentum_mu))
    print("mini_batch_size: {0}".format(mini_batch_size))
    print("num_epoch: {0}".format(num_epoch))

    net = Sequential(debug=debug_mode)
    net.add(LinearLayer(input_dim, num_hidden_units))
    net.add(ReluLayer())
    net.add(LinearLayer(num_hidden_units, 2))
    net.add(SoftMaxLayer())

    print("{0}\n".format(net))

    loss = CrossEntropyLoss()

    training_objective = Objective(loss)
    test_objective = Objective(loss)
    errorRate = ErrorRate()

    print("Loss function: {0}\n".format(loss))

    solver = MomentumSolver(lr=learning_rate, mu=momentum_mu)

    monitor = Monitor()
    monitor.createSession(iter_log_file, epoch_log_file)
    cum_iter = 0
    for epoch in range(num_epoch):
        print("Training epoch {0}...".format(epoch))
        timer.begin("epoch")
        for iter, batch in enumerate(data.get_train_batches(
                mini_batch_size)):  #BATCHES ARE FORMED HERE
            if iter > 1 and debug_mode:
                break

            timer.begin("iter")

            (x, target) = batch
            batch_size = x.shape[2]

            z = net.forward(x)
            dbg.disp("\toutput: {0}".format(z))
            dbg.disp("\toutput shape: {0}".format(z.shape))

            if debug_mode:
                l = loss.forward(z, target)
                dbg.disp("\tloss: {0}".format(l))
                dbg.disp("\tloss shape: {0}".format(l.shape))

            gradients = loss.backward(z, target)
            dbg.disp("\tgradients: {0}".format(gradients))
            dbg.disp("\tgradients shape: {0}".format(gradients.shape))

            grad_x = net.backward(x, gradients)
            dbg.disp("\tgrad_x: {0}".format(grad_x))
            dbg.disp("\tgrad_x: {0}".format(grad_x.shape))

            net.updateParams(solver)

            loss_avg = training_objective.compute(z, target)
            elapsed = timer.getElapsed("iter")

            print("\t[iter {0}]\tloss: {1}\telapsed: {2}".format(
                iter, loss_avg, elapsed))
            monitor.recordIteration(cum_iter, loss_avg, elapsed)

            cum_iter += 1

        target = data.get_test_labels()
        x = data.get_test_data()
        output = net.forward(x)  #forward_layer
        loss_avg_test = test_objective.compute(output, target)
        error_rate_test = errorRate.compute(output, target)  #100 % - ACCURACY

        target = data.get_train_labels()
        x = data.get_train_data()
        output = net.forward(x)  #forward_layer
        loss_avg_train = training_objective.compute(output, target)
        error_rate_train = errorRate.compute(output, target)  #100 % - ACCURACY

        elapsed = timer.getElapsed("epoch")

        print(
            "End of epoch:\ttest objective: {0}\ttrain objective: {1}".format(
                loss_avg_test, loss_avg_train))
        print("\t\ttest error rate: {0}\ttrain error rate: {1}".format(
            error_rate_test, error_rate_train))
        print("Finished epoch {1} in {0:2f}s.\n".format(elapsed, epoch))
        monitor.recordEpoch(epoch, loss_avg_train, loss_avg_test,
                            error_rate_train, error_rate_test, elapsed)

    monitor.finishSession()