예제 #1
0
            loss = LOSS(den,es_den)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            trainloss.update(loss.item(), img.shape[0])


            es_count = np.sum(es_den[0][0].cpu().detach().numpy())
            gt_count = np.sum(den[0][0].cpu().detach().numpy())
            escount.append(es_count)
            gtcount.append(gt_count)
        durantion = time.time()-trainstart
        trainfps = step/durantion

        trainmae,trainmse = eva_model(escount,gtcount)
        writer.add_scalars('data/trainstate', {
                                          'trainmse': trainmse,
                                          'trainmae': trainmae}, epoch)

        info = 'trianloss:{%.6f} @ trainmae:{%.3f} @ trainmse:{%.3f} @ fps:{%.3f}'%(trainloss.avg*10000,trainmae, trainmse,trainfps)
        logger.info(info)

        del escount[:]
        del gtcount[:]

        with torch.no_grad():
            net.eval()
            time_stamp = 0.0
            for index,(timg,tden) in tqdm(enumerate(val_loader)):
                start = time.time()
예제 #2
0
파일: play.py 프로젝트: xwjBupt/MySaNet
            gt_count = np.sum(den[0][0].cpu().detach().numpy())

            diff = abs(es_count-gt_count)
            stop = time.time()
            logger.info(name[0].split('/')[-1])
            logger.info(' @ gt: %.3f vs %.3f:es @diff: %.3f'%(gt_count,es_count,diff))
            duration+=stop-start
            recod[name] = diff
            escount.append(es_count)
            gtcount.append(gt_count)

            plt.subplot(131)
            plt.title('raw image')
            plt.imshow(img[0][0].cpu().detach().numpy())
            plt.subplot(132)
            plt.title('gtcount:%.2f' % gt_count)
            plt.imshow(den[0][0].cpu().detach().numpy())
            plt.subplot(133)
            plt.title('escount:%.2f' % es_count)
            plt.imshow(es_den[0][0].cpu().detach().numpy())
            plt.savefig(saveimg + '.jpg'.format(name))

    list1 = sorted(recod.items(), key=lambda x: x[1])
    fps = duration/len(test_data)
    MAE,MSE = eva_model(escount,gtcount)
    logger.info('$$$$ MAE: %.3f - MSE: %.3f - FPS: %.3f $$$$'%(MAE,MSE,fps))

    logger.info('!!!! sort start !!!!')
    logger.info(list1)
    logger.info('!!!! sort done !!!!')