tf_rate_upperbound = conf['training_parameter']['tf_rate_upperbound'] tf_rate_lowerbound = conf['training_parameter']['tf_rate_lowerbound'] tf_decay_step = conf['training_parameter']['tf_decay_step'] seed = conf['training_parameter']['seed'] # Fix random seed np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # Load preprocessed LibriSpeech Dataset train_set = create_dataloader(conf['meta_variable']['data_path'] + '/train.csv', **conf['model_parameter'], **conf['training_parameter'], shuffle=True, training=True) valid_set = create_dataloader(conf['meta_variable']['data_path'] + '/dev.csv', **conf['model_parameter'], **conf['training_parameter'], shuffle=False, drop_last=True) idx2char = {} with open(conf['meta_variable']['data_path'] + '/idx2chap.csv', 'r') as f: for line in f: if 'idx' in line: continue idx2char[int(line.split(',')[0])] = line[:-1].split(',')[1] # Load pre-trained model if needed
training_msg = 'epoch_{:2d}_step_{:3d}_TrLoss_{:.4f}_TrWER_{:.2f}' epoch_end_msg = 'epoch_{:2d}_TrLoss_{:.4f}_TrWER_{:.2f}_TtLoss_{:.4f}_TtWER_{:.2f}_time_{:.2f}' verbose_step = conf['training_parameter']['verbose_step'] tf_rate_upperbound = conf['training_parameter']['tf_rate_upperbound'] tf_rate_lowerbound = conf['training_parameter']['tf_rate_lowerbound'] # Load preprocessed LibriSpeech Dataset ( using testing set directly here, replace them with validation set your self) # X : Padding to shape [num of sample, max_timestep, feature_dim] # Y : Squeeze repeated label and apply one-hot encoding (preserve 0 for <sos> and 1 for <eos>) print("Starting") #X_train, y_train = load_dataset(conf['train_variable']['data_path']) #X_val, y_val = load_dataset(conf['val_variable']['data_path']) #X_test, y_test = load_dataset(conf['test_variable']['data_path']) train_set = create_dataloader( data_path="/home/paperspace/Smart_Titles/ASR_Engine/LibriSpeech/train.csv", **conf['model_parameter'], **conf['training_parameter'], shuffle=True) valid_set = create_dataloader( data_path="/home/paperspace/Smart_Titles/ASR_Engine/LibriSpeech/dev.csv", **conf['model_parameter'], **conf['training_parameter'], shuffle=False) test_set = create_dataloader( data_path="/home/paperspace/Smart_Titles/ASR_Engine/LibriSpeech/test.csv", **conf['model_parameter'], **conf['training_parameter'], shuffle=False) print("Parameters Loaded") # Construct LAS Model or load pretrained LAS model if not use_pretrained: