예제 #1
0
파일: sampling.py 프로젝트: ml-lab/infotopo
    def _get_smat(p, scheme, cutoff_singval, stepscale, temperature):
        if scheme == 'jtj':
            jac = Dfunc(p)
            jtj = jac.T * jac
            smat = _hess2smat(jtj, cutoff_singval, stepscale, temperature)
        if scheme == 'eye':
            smat = Matrix.eye(func.pids) * stepscale

        return smat
예제 #2
0
    def _get_smat(p, scheme, cutoff_singval, stepscale, temperature):
        if scheme == 'jtj':
            jac = Dfunc(p)
            jtj = np.dot(jac.T, jac)
            smat = _hess2smat(jtj, cutoff_singval, stepscale, temperature)
        if scheme == 'eye':
            smat = Matrix.eye(func.pids) * stepscale

        return smat
예제 #3
0
def get_flux_ctrl_mat(net, p=None, normed=False):
    """
    """
    net.update(p=p, t=np.inf)
    I, Es, Cs = Matrix.eye(net.Jids, net.vids), net.Es, net.Cs
    CJ = I + (Es * Cs).ch_rowvarids(net.Jids)
    if normed:
        return CJ.normalize(net.J, net.v)
    else:
        return CJ
예제 #4
0
파일: mca.py 프로젝트: ml-lab/infotopo
def get_flux_ctrl_mat(net, p=None, normed=False):
    """
    """
    net.update(p=p, t=np.inf)
    I, Es, Cs = Matrix.eye(net.fluxids, net.rateids), net.Es, net.Cs
    CJ = I + (Es * Cs).ch_rowvarids(net.fluxids)
    if normed:
        return CJ.normalize(net.J, net.v)
    else:
        return CJ
예제 #5
0
def get_link_mat(net):
    """
    L0: L = [I ]
            [L0]
            
    N = L * Nr
    """
    I = Matrix.eye(net.ixids)
    L0 = get_reduced_link_mat(net)
    L = Matrix(pd.concat((I, L0)))
    return L
예제 #6
0
def get_link_mat(net):
    """
    L0: L = [I ]
            [L0]
            
    N = L * Nr
    """
    I = Matrix.eye(net.ixids)
    if len(net.ixids) == len(net.xids):
        L = I
    else:
        L0 = -net.P.loc[:, net.ixids].ch_rowvarids(net.dxids)
        L = Matrix(pd.concat((I, L0)))
    return L
예제 #7
0
파일: residual.py 프로젝트: ml-lab/infotopo
    def fit_lm_custom(self, p0=None, in_logp=True,
                   maxnstep=1000, ret_full=False, ret_steps=False, disp=False, 
                   lamb0=0.001, tol=1e-6, k_up=10, k_down=10, ndone=5, **kwargs):
        """
        
        Input:
            k_up and k_down: parameters used in tuning lamb at each step;
                in the traditional scheme, typically 
                    k_up = k_down = 10;
                in the delayed gratification scheme, typically 
                    k_up = 2, k_down = 10 (see, [1])
        
        grad C = Jt * r
        J = U * S * Vt
         ______     ______  
        |      |   |      |  ______   ______
        |      |   |      | |      | |      |
        |   J  | = |   U  | |   S  | |  Vt  |
        |      |   |      | |______| |______|
        |______|   |______|
        
        Vt * V = V * Vt = I
        Ut* U = I =/= U * Ut
        JtJ = (V * S * Ut) * (U * S * Vt) = V * S^2 * Vt
        
         ______     ____________   ______
        |      |   |            | |      |  ______
        |      |   |            | |      | |      |
        |      | = |            | |      | |      |
        |      |   |            | |      | |______|
        |______|   |____________| |______|
        
        
        
        Gradient Descent step: 
            delta p = - grad C   
            
        Gauss Newton step:
            delta p = - (JtJ).I * grad C

        Levenberg Marquardt step:
            delta p = - (JtJ + lamb * I).inv * grad C
                    = - (V * (S^2 + lamb * I) * Vt).inv * Jt * r
                    = - (V * (S^2 + lamb * I).inv * Vt) * V * S * Ut * r
                    = - V * (S^2 + lamb * I).inv * S * Ut * r
        
        References:
        [1] Transtrum
        [2] Numerical Recipes
        """
        if p0 is None:
            p0 = self.p0
        else:
            p0 = Series(p0, self.pids)

        if in_logp:
            res = self.get_in_logp()
            p0 = p0.log()
        else:
            res = self
        
        if maxnstep is None :
            maxnstep = len(res.pids) * 100

        nstep = 0
        nfcall = 0
        nDfcall = 0  

        p = p0
        lamb = lamb0
        done = 0
        accept = True
        convergence = False
        
        r = res(p0)
        cost = _r2cost(r)        
        nfcall += 1

        if ret_steps:
            ps = DF([p0], columns=res.pids)
            deltaps = DF(columns=res.pids)
            costs = Series([cost], name='cost')
            lambs = Series([lamb], name='lamb')
            ps.index.name = 'step'
            costs.index.name = 'step'
            lambs.index.name = 'step'
        
        while not convergence and nstep < maxnstep:
            
            if accept:
                jac = res.Dr(p)
                U, S, Vt = jac.svd(to_mat=True)
                nDfcall += 1            
            
            
            deltap = - Vt.T * (S**2 + lamb * Matrix.eye(res.pids)).I * S * U.T * r
            deltap = deltap[0]  # convert 1-d DF to series
            p2 = p + deltap
            nstep += 1
            
            r2 = res(p2)
            cost2 = _r2cost(r2)
            nfcall += 1
            
            if np.abs(cost - cost2) < max(tol, cost * tol):
                done += 1
                
            if cost2 < cost:
                accept = True
                lamb /= k_down
                p = p2
                r = r2
                cost = cost2    
            else:
                accept = False
                lamb *= k_up
            
            if ret_steps:
                ps.loc[ps.nrow] = p
                deltaps.loc[deltaps.nrow] = deltap
                costs.loc[costs.size] = cost
                lambs.loc[lambs.size] = lamb
                
            if done == ndone:
                convergence = True
                # lamb = 0
                
        if in_logp:
            p = p.exp()
            if ret_steps:
                ps = np.exp(ps)
                ps.columns = self.pids
                
            
        out = Series(OD([('p', p), ('cost', cost)]))
        if ret_full:
            out.nfcall = nfcall
            out.nDfcall = nDfcall
            out.convergence = convergence
            out.nstep = nstep
        if ret_steps:
            out.ps = ps
            out.deltaps = deltaps
            out.costs = costs
            out.lambs = lambs

        return out
예제 #8
0
def fit_lm_custom(
        res,
        p0=None,
        in_logp=True,
        maxnstep=1000,
        disp=False,  #ret_full=False, ret_steps=False, 
        lamb0=1e-3,
        tol=1e-6,
        k_up=10,
        k_down=10,
        ndone=5,
        **kwargs):
    """
    
    Input:
        k_up and k_down: parameters used in tuning lamb at each step;
            in the traditional scheme, typically 
                k_up = k_down = 10;
            in the delayed gratification scheme, typically 
                k_up = 2, k_down = 10 (see, [1])
    
    grad C = Jt * r
    J = U * S * Vt
     ______     ______  
    |      |   |      |  ______   ______
    |      |   |      | |      | |      |
    |   J  | = |   U  | |   S  | |  Vt  |
    |      |   |      | |______| |______|
    |______|   |______|
    
    V.T * V = V * V.T = I
    U.T * U = I =/= U * U.t
    J.T * J = (V * S * U.T) * (U * S * V.T) = V * S^2 * V.T
    
     ______     ____________   ______
    |      |   |            | |      |  ______
    |      |   |            | |      | |      |
    |      | = |            | |      | |      |
    |      |   |            | |      | |______|
    |______|   |____________| |______|
    
    
    
    Gradient-descent step: 
        delta p = - grad C = - J.T * r  
        
    Gauss-Newton step:
        delta p = - (J.T * J).inv * grad C = - (J.T * J).inv * J.T * r

    Levenberg step:
        delta p = - (J.T * J + lamb * I).inv * grad C
                = - (V * (S^2 + lamb * I) * V.T).I * J.T * r
                = - (V * (S^2 + lamb * I).inv * V.T) * V * S * U.T * r
                = - V * (S^2 + lamb * I).inv * S * U.T * r
    
    References:
    [1] Transtrum
    [2] Numerical Recipes
    """
    if p0 is None:
        p0 = res.p0
    else:
        p0 = Series(p0, res.pids)

    if in_logp:
        res = res.get_in_logp()
        p0 = p0.log()
    else:
        res = res

    if maxnstep is None:
        maxnstep = len(res.pids) * 100

    nstep = 0
    nfcall = 0
    nDfcall = 0

    p = p0
    lamb = lamb0
    done = 0
    accept = True
    convergence = False

    r = res(p0)
    cost = _r2cost(r)
    nfcall += 1

    ps = [p0]
    deltaps = []
    costs = [cost]
    lambs = [lamb]

    while not convergence and nstep < maxnstep:

        if accept:
            ## FIXME ***
            jac = res.Dr(p, to_mat=True)
            U, S, Vt = jac.svd(to_mat=True)
            nDfcall += 1

        deltap = -Vt.T * (S**2 + lamb * Matrix.eye(res.pids)).I * S * U.T * r
        deltap = deltap[0]  # convert 1-d DF to series
        p2 = p + deltap
        nstep += 1

        if disp:
            #print nstep
            print deltap.exp()[:10]
            print lamb
            #print p2
            #from util import butil
            #butil.set_global(p=p, deltap=deltap, p2=p2, nstep=nstep)

        r2 = res(p2)
        cost2 = _r2cost(r2)
        nfcall += 1

        if np.abs(cost - cost2) < max(tol, cost * tol):
            done += 1

        if cost2 < cost:
            accept = True
            lamb /= k_down
            p = p2
            r = r2
            cost = cost2
        else:
            accept = False
            lamb *= k_up

        ps.append(p)
        deltaps.append(deltap)
        costs.append(cost)
        lambs.append(lamb)

        if done == ndone:
            convergence = True
            # lamb = 0

    if in_logp:
        ps = np.exp(ps)
        pids = map(lambda pid: pid.lstrip('log_'), res.pids)
    else:
        pids = res.pids

    ## need to calculate cov  FIXME ***

    fit = Fit(costs=costs,
              ps=ps,
              pids=pids,
              lambs=lambs,
              nfcall=nfcall,
              nDfcall=nDfcall,
              convergence=convergence,
              nstep=nstep)
    return fit