restorer.restore(sess, ckpt_states[model_ind]) # load Ops and variables according to old model and your need graph = tf.get_default_graph() inputs_ = graph.get_tensor_by_name("inputs/inputs_:0") mask_prob = graph.get_tensor_by_name("inputs/Placeholder_1:0") targets_ = graph.get_tensor_by_name("inputs/targets_:0") keep_prob = graph.get_tensor_by_name("inputs/Placeholder:0") # for dropout #outputs_ = graph.get_tensor_by_name("outputs/outputs_:0") #outputs_ = graph.get_tensor_by_name("outputs/conv2d/Relu:0") # act_fun = relu outputs_ = graph.get_tensor_by_name("outputs/conv2d/Tanh:0") # act_fun = relu cost = graph.get_tensor_by_name("loss/Mean:0") # In[]: # load data pic_test_data = my_io.load_mat(data_path) pic_test_x = pic_test_data['N_MNIST_pic_test'].astype('float32') print('pic_test_x: ', pic_test_x.shape) in_imgs = pic_test_x #num_selected = 200 #test_idx = np.linspace(0,len(pic_test_x)-1,num_selected).astype('int32') #in_imgs = pic_test_x[test_idx] #gt_imgs = pic_test_y[test_idx] # In[]: # prediction ind = 0 mean_cost = 0 time_cost = 0 reconstructed = np.zeros(in_imgs.shape, dtype='float32') for batch_x, _ in my_io.batch_iter(test_batch_size,
# cross entropy loss # xentropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits_) # cost = tf.reduce_mean(xentropy) # mse loss mse = tf.losses.mean_squared_error(targets_, outputs_) cost = tf.reduce_mean(mse) tf.summary.scalar('cost', cost) with tf.name_scope('train'): optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # In[]: # load data train_data = my_io.load_mat(train_path) test_data = my_io.load_mat(test_path) train_x = train_data['data'].astype('float32') test_x = test_data['data'].astype('float32') if SUP_FLAG == 0: train_y = train_x test_y = test_x else: train_y = train_data['data_gt'].astype('float32') test_y = test_data['data_gt'].astype('float32') #test_y = test_data['data_gt'].astype('float32') print('train_x: ', train_x.shape, '\ttrain_y: ', train_y.shape, '\ntest_x: ', test_x.shape, '\ttest_y: ', test_y.shape)
# mse loss mse = tf.losses.mean_squared_error(targets_ , outputs_) cost = tf.reduce_mean(mse) tf.summary.scalar('cost', cost) with tf.name_scope('train'): optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # In[]: # load data train_data = my_io.load_mat(path1) test_data = my_io.load_mat(path2) train_x = train_data['N_MNIST_pic_train'].astype('float32') test_x = test_data['N_MNIST_pic_test'].astype('float32') if SUP_FLAG==0: train_y = train_x test_y = test_x else: train_y = train_data['N_MNIST_pic_train_gt'].astype('float32') test_y = test_data['N_MNIST_pic_test_gt'].astype('float32') #test_y = test_data['N_MNIST_pic_test_gt'].astype('float32') print('train_x: ', train_x.shape, '\ttrain_y: ', train_y.shape, '\ntest_x: ', test_x.shape, '\ttest_y: ', test_y.shape)