예제 #1
0
import os
import time
import shutil
import random
import torch
import numpy as np

import sys
sys.path.append("..")
from util import util, transformer, dataloader, statistics, plot, options
from util import array_operation as arr
from models import creatnet, core

# -----------------------------Init-----------------------------
opt = options.Options()
opt.parser.add_argument('--rec_tmp',
                        type=str,
                        default='./server_data/rec_data',
                        help='')
opt = opt.getparse()
opt.k_fold = 0
opt.save_dir = './checkpoints'
util.makedirs(opt.save_dir)
util.makedirs(opt.rec_tmp)

# -----------------------------Load original data-----------------------------
signals, labels = dataloader.loaddataset(opt)
ori_signals_train,ori_labels_train,ori_signals_eval,ori_labels_eval = \
signals[:opt.fold_index[0]].copy(),labels[:opt.fold_index[0]].copy(),signals[opt.fold_index[0]:].copy(),labels[opt.fold_index[0]:].copy()
label_cnt, label_cnt_per, label_num = statistics.label_statistics(labels)
opt = options.get_auto_options(opt, label_cnt_per, label_num,
예제 #2
0
파일: train.py 프로젝트: HypoX64/candock
import os
import time

import numpy as np
import torch
from torch import nn, optim
import warnings
warnings.filterwarnings("ignore")

from util import util, plot, options
from data import augmenter, transforms, dataloader, statistics
import core

opt = options.Options().getparse()
"""Use your own data to train
* step1: Generate signals.npy and labels.npy in the following format.
# 1.type:numpydata   signals:np.float32   labels:np.int64
# 2.shape  signals:[num,ch,length]    labels:[num]
# num:samples_num, ch :channel_num,  length:length of each sample
# for example:
signals = np.zeros((10,1,10),dtype='np.float64')
labels = np.array([0,0,0,0,0,1,1,1,1,1])      #0->class0    1->class1
* step2: input  ```--dataset_dir your_dataset_dir``` when running code.
"""

#----------------------------Load Data----------------------------
t1 = time.time()
signals, labels = dataloader.loaddataset(opt)
if opt.gan:
    signals, labels = augmenter.dcgan(opt, signals, labels)
label_cnt, label_cnt_per, label_num = statistics.label_statistics(labels)