for pos in range(length): pvar[pos] = np.std(d[pos * step:(pos * step) + rslt, s]) #print p lsignalsvar.append((pvar, datainfo.sensors[s])) plt.subplots(figsize=(20, 10)) plt.axis([0, length, 0, 0.2]) plot(range(length), pvar) #plt.show() plt.title(datainfo.datafiles[dfile] + '-' + datainfo.expnames[dfile] + '-' + datainfo.sensors[s], fontsize=48) plt.savefig( datainfo.dpath + '/' + datainfo.name + '/Results/' + 'variance-' + datainfo.datafiles[dfile] + '-' + datainfo.expnames[dfile] + '-' + datainfo.sensors[s] + '.pdf', orientation='landscape', format='pdf') plt.close() plotSignals( lsignalsvar, 6, 2, 0.2, 0, 'variance-' + datainfo.datafiles[dfile] + '-' + datainfo.expnames[dfile] + '-' + str(rslt) + '-' + str(step), datainfo.datafiles[dfile] + '-' + datainfo.expnames[dfile], datainfo.dpath + '/' + datainfo.name + '/Results/', orientation='portrait', cstd=[0.05] * 12)
rects = ax.bar(ind+(i*width), h, width, color=colors[i]) fig.suptitle(datainfo.name + '-' + s + ext, fontsize=48) minaxis = np.min(km.cluster_centers_) maxaxis = np.max(km.cluster_centers_) for nc in range(nclusters): ax2 = fig.add_subplot(2, nclusters, nc+nclusters+1) signal = km.cluster_centers_[lmax[nc][0]] plt.title(' ( '+str(cnt[lmax[nc][0]])+' )') t = arange(0.0, len(signal), 1) ax2.axis([0, len(signal), minaxis, maxaxis]) ax2.plot(t,signal) plt.axhline(linewidth=1, color='r', y=0) fig.savefig(datainfo.dpath+'/Results/' + datainfo.name + '-' + s + ext + '-histo-sort.pdf', orientation='landscape', format='pdf') # plt.show() print '*******************' for nc in range(nclusters): lsignals.append((km.cluster_centers_[lmax[nc][0]], str(nc)+' ( '+str(cnt[lmax[nc][0]])+' )')) #print s, np.max(km.cluster_centers_), np.min(km.cluster_centers_) if nclusters % 2 == 0: part = nclusters /2 else: part = (nclusters /2) + 1 plotSignals(lsignals,part,2,np.max(km.cluster_centers_),np.min(km.cluster_centers_), datainfo.name + '-' + s + ext, datainfo.name + '-' + s + ext, datainfo.dpath+'/Results/') # for cc in range(nclusters): # show_signal(km.cluster_centers_[cc]) f.close()
c = Counter(l) print c lcenters = [] numex = np.zeros(nc) for i in c: centers[i] /= c[i] print i, c[i] numex[i] = c[i] lcenters.append((centers[i], 'center %d' % i)) mx = 0.26 # np.max(centers) mn = -0.06 # np.min(centers) plotSignals(lcenters, nc, 1, mx, mn, 'cluster-' + alg + '-%s-NC%d' % (line, nc), 'cluster-' + alg + '-%sNC%d' % (line, nc), clusterpath) if alg == 'spectral': params = {'clalg': 'spectral', 'nc': nc, 'labels': 'discretize', 'affinity': 'nearest_neighbors', 'n_neigbors': 30 } elif alg == 'kmeans': params = {'clalg': 'kmeans', 'nc': nc} peakdata = {'labels': lab, 'centers': centers, 'numex': numex, 'params': params }
numex = np.zeros(nc) for i in c: centers[i] /= c[i] print i, c[i] numex[i] = c[i] lcenters.append((centers[i], 'center %d' % i)) cstd = np.zeros((nc, data.shape[1])) for i in c: center_mask = lab == i cstd[i] = np.std(data[center_mask], axis=0) mx = np.max(centers) # 0.26 mn = np.min(centers) #-0.06 plotSignals(lcenters, 8, 2, mx, mn, 'cluster-' + alg + '-N-%s-NC%d' % (line, nc), 'cluster-' + alg + '-%sNC%d' % (line, nc), clusterpath, cstd=cstd) # # if alg == 'spectral': # params = {'clalg': 'spectral', # 'nc': nc, # 'labels': 'discretize', # 'affinity': 'nearest_neighbors', # 'n_neigbors': 30 # } # elif alg == 'kmeans': # params = {'clalg': 'kmeans', 'nc': nc} # peakdata = {'labels': lab, # 'centers': centers, # 'numex': numex, # 'params': params
maxaxis = np.max(centroids) for nc in range(nclusters): ax2 = fig.add_subplot(2, nclusters, nc + nclusters + 1) signal = centroids[nc] plt.title(' ( ' + str(nc + 1) + ' )') t = np.arange(0.0, len(signal), 1) ax2.axis([0, len(signal), minaxis, maxaxis]) ax2.plot(t, signal) plt.axhline(linewidth=1, color='r', y=0) fig.savefig(datainfo.dpath + '/' + datainfo.name + '/Results/' + datainfo.name + '-' + sensor + '-' + str(nclusters) + '-' + ext + '-histo-sort.pdf', orientation='landscape', format='pdf') # plt.show() print('*******************') for nc in range(nclusters): lsignals.append((centroids[nc], str(nc))) if nclusters % 2 == 0: part = nclusters / 2 else: part = (nclusters / 2) + 1 plotSignals( lsignals, part, 2, maxaxis, minaxis, datainfo.name + '-' + sensor + '-' + str(nclusters) + '-' + ext, datainfo.name + '-' + sensor + '-' + ext, datainfo.dpath + '/' + datainfo.name + '/Results/') datainfo.close_experiment_data(f)
ax.set_xticklabels(['class %d'% (i+1) for i in ind]) for i, h in enumerate(lhisto): rects = ax.bar(ind+(i*width), h, width, color=colors[i]) fig.suptitle(datainfo.name + '-' + sensor+ '-' + ext, fontsize=48) minaxis = np.min(centroids) maxaxis = np.max(centroids) for nc in range(nclusters): ax2 = fig.add_subplot(2, nclusters, nc+nclusters+1) signal = centroids[nc] plt.title(' ( '+str(nc+1)+' )') t = arange(0.0, len(signal), 1) ax2.axis([0, len(signal), minaxis, maxaxis]) ax2.plot(t,signal) plt.axhline(linewidth=1, color='r', y=0) fig.savefig(datainfo.dpath + '/' + datainfo.name + '/Results/' + datainfo.name + '-' + sensor + '-' + str(nclusters) + '-' + ext + '-histo-sort.pdf', orientation='landscape', format='pdf') # plt.show() print('*******************') for nc in range(nclusters): lsignals.append((centroids[nc], str(nc))) if nclusters % 2 == 0: part = nclusters /2 else: part = (nclusters /2) + 1 plotSignals(lsignals, part, 2, maxaxis, minaxis, datainfo.name + '-' + sensor + '-' + str(nclusters)+ '-' + ext, datainfo.name + '-' + sensor+ '-' + ext, datainfo.dpath + '/' + datainfo.name + '/Results/') datainfo.close_experiment_data(f)
datainfo = experiments[expname] f = h5py.File(datainfo.dpath + datainfo.name + ext + '.hdf5', 'r') rslt = 50000 step = 10000 for dfile in range(0,len(datainfo.datafiles)): d = f[datainfo.datafiles[dfile] + '/' + 'Raw'] length = int(d.shape[0]/float(step)) lsignalsvar = [] lsignalsmean = [] for s in [4,5,6,7]: # range(len(datainfo.sensors)): print dfile, datainfo.sensors[s] pvar = np.zeros(length) pmean = np.zeros(length) for pos in range(length): pvar[pos] = np.std(d[pos*step:(pos*step)+rslt, s]) #print p lsignalsvar.append((pvar,datainfo.sensors[s])) plt.subplots(figsize=(20, 10)) plt.axis([0, length, 0, 0.2]) plot(range(length), pvar) #plt.show() plt.title(datainfo.datafiles[dfile]+ '-' + datainfo.sensors[s], fontsize=48) plt.savefig(datainfo.dpath + '/Results/' + datainfo.datafiles[dfile] + '-' + datainfo.sensors[s] + '-variance.pdf', orientation='landscape', format='pdf') plt.close() plotSignals(lsignalsvar, 2, 2, 0.2, 0, datainfo.datafiles[dfile]+'-'+str(rslt)+'-'+str(step)+'-variance', datainfo.datafiles[dfile], datainfo.dpath + '/Results/', orientation='portrait', cstd=[0.05, 0.05, 0.05, 0.05])
datainfo = experiments[expname] f = h5py.File(datainfo.dpath + datainfo.name + '/' + datainfo.name + '.hdf5', 'r') rslt = 50000 step = 10000 for dfile in range(0,len(datainfo.datafiles)): d = f[datainfo.datafiles[dfile] + '/' + 'Raw'] length = int(d.shape[0]/float(step)) lsignalsvar = [] lsignalsmean = [] for s in range(len(datainfo.sensors)): print dfile, datainfo.sensors[s] pvar = np.zeros(length) pmean = np.zeros(length) for pos in range(length): pvar[pos] = np.std(d[pos*step:(pos*step)+rslt, s]) #print p lsignalsvar.append((pvar,datainfo.sensors[s])) plt.subplots(figsize=(20, 10)) plt.axis([0, length, 0, 0.2]) plot(range(length), pvar) #plt.show() plt.title(datainfo.datafiles[dfile]+'-'+ datainfo.expnames[dfile]+ '-' + datainfo.sensors[s], fontsize=48) plt.savefig(datainfo.dpath + '/' + datainfo.name + '/Results/' + 'variance-' + datainfo.datafiles[dfile]+'-'+ datainfo.expnames[dfile] + '-' + datainfo.sensors[s] + '.pdf', orientation='landscape', format='pdf') plt.close() plotSignals(lsignalsvar, 6, 2, 0.2, 0, 'variance-'+datainfo.datafiles[dfile]+'-'+datainfo.expnames[dfile]+'-'+str(rslt)+'-'+str(step), datainfo.datafiles[dfile]+'-'+datainfo.expnames[dfile], datainfo.dpath + '/' + datainfo.name + '/Results/', orientation='portrait', cstd=[0.05]*12)
ax.set_xticklabels(ind) for i, h in enumerate(lhisto): rects = ax.bar(ind+(i*width), h, width, color=colors[i]) fig.suptitle(datainfo.name + '-' + sensor, fontsize=48) minaxis = np.min(centroids) maxaxis = np.max(centroids) for nc in range(nclusters): ax2 = fig.add_subplot(2, nclusters, nc+nclusters+1) signal = centroids[lmax[nc][0]] plt.title(' ( '+str(cnt[lmax[nc][0]])+' )') t = arange(0.0, len(signal), 1) ax2.axis([0, len(signal), minaxis, maxaxis]) ax2.plot(t,signal) plt.axhline(linewidth=1, color='r', y=0) fig.savefig(datainfo.dpath + '/' + datainfo.name + '/Results/' + datainfo.name + '-' + sensor + '-' + str(nclusters) + '-histo-sort.pdf', orientation='landscape', format='pdf') # plt.show() print('*******************') for nc in range(nclusters): lsignals.append((centroids[lmax[nc][0]], str(nc)+' ( '+str(cnt[lmax[nc][0]])+' )')) if nclusters % 2 == 0: part = nclusters /2 else: part = (nclusters /2) + 1 plotSignals(lsignals, part, 2, maxaxis, minaxis, datainfo.name + '-' + sensor, datainfo.name + '-' + sensor, datainfo.dpath + '/' + datainfo.name + '/Results/') datainfo.close_experiment_data(f)