def eval(self, z, y=None): out = self.sess.run(self.G, feed_dict = { self.Z: z[:, :self.noise_dim], self.c_dis: y, self.c_cont: z[:,self.noise_dim:] }) out = processing.img_deprocessing(out) fig = processing.show_images(out,'generated/save.png') return fig
def eval(self, z, y=None): out = self.sess.run(self.G, feed_dict={self.Z: z, self.y: y}) out = processing.img_deprocessing(out) return processing.show_images(out)
def eval(self, z, y=None): out = self.sess.run( self.y_queue[self.num_stack], feed_dict = {self.Z: z, self.y: y, self.X: np.zeros([len(y), self.input_shape[0]])}) out = processing.img_deprocessing(out) return processing.show_images(out)
def eval(self, z, y=None): out = self.sess.run(self.G, feed_dict = {self.Z: z, self.y: y, self.X: np.zeros([self.y[0], self.input_shape[0]])}) out = processing.img_deprocessing(out) return processing.show_images(out)
def eval(self, z, y=None): out = self.sess.run(self.G, feed_dict={self.Z: z}) out = processing.mnist_deprocessing(out) fig = processing.show_images(out, 'generated/save.png') return fig