def backward_D_B(self): fake_A = self.fake_A_pool.query(self.fake_A) loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A) self.loss_D_B = loss_D_B.data[0] ## for object fake_A_object = self.fake_A_object_pool.query(self.fake_A_object) real_A_object = roi_pooling(self.real_A,self.real_A_bboxes,size=self.object_size) loss_D_B_object = self.backward_D_basic(self.netD_B_object, real_A_object, fake_A_object) self.loss_D_B_object = loss_D_B_object.data[0] # Combine loss loss_D_B_total = (5 * loss_D_B + loss_D_B_object) # backward loss_D_B_total.backward()
def backward_D_A(self): fake_B = self.fake_B_pool.query(self.fake_B) loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B) self.loss_D_A = loss_D_A.data[0] ## for object fake_B_object = self.fake_B_object_pool.query(self.fake_B_object) real_B_object = roi_pooling(self.real_B, self.real_B_bboxes, size=self.object_size) loss_D_A_object = self.backward_D_basic(self.netD_A_object, real_B_object, fake_B_object) self.loss_D_A_object = loss_D_A_object.data[0] # Combine loss loss_D_A_total = (loss_D_A + 0.1 * loss_D_A_object) # backward loss_D_A_total.backward()
def backward_G(self): lambda_idt = self.opt.identity lambda_A = self.opt.lambda_A lambda_B = self.opt.lambda_B # Identity loss if lambda_idt > 0: # G_A should be identity if real_B is fed. idt_A = self.netG_A(self.real_B) loss_idt_A = self.criterionIdt(idt_A, self.real_B) * lambda_B * lambda_idt # G_B should be identity if real_A is fed. idt_B = self.netG_B(self.real_A) loss_idt_B = self.criterionIdt(idt_B, self.real_A) * lambda_A * lambda_idt self.idt_A = idt_A.data self.idt_B = idt_B.data self.loss_idt_A = loss_idt_A.data[0] self.loss_idt_B = loss_idt_B.data[0] else: loss_idt_A = 0 loss_idt_B = 0 self.loss_idt_A = 0 self.loss_idt_B = 0 # GAN loss D_A(G_A(A)) fake_B = self.netG_A(self.real_A) pred_fake = self.netD_A(fake_B) loss_G_A = self.criterionGAN(pred_fake, True) # GAN loss D_A_object(G_A(A)) fake_B_object = roi_pooling(fake_B, self.real_A_bboxes, size=self.object_size) pred_fake_object = self.netD_B_object(fake_B_object) loss_G_A_object = self.criterionGAN(pred_fake_object, True) ###TODO: Debug # test = transforms.ToPILImage()(fake_B_object.cpu().data.squeeze(0)) # test.show() # GAN loss D_B(G_B(B)) fake_A = self.netG_B(self.real_B) pred_fake = self.netD_B(fake_A) loss_G_B = self.criterionGAN(pred_fake, True) # GAN loss D_A_object(G_A(A)) fake_A_object = roi_pooling(fake_A, self.real_B_bboxes, size=self.object_size) pred_fake_object = self.netD_A_object(fake_A_object) loss_G_B_object = self.criterionGAN(pred_fake_object, True) # Forward cycle loss rec_A = self.netG_B(fake_B) loss_cycle_A = self.criterionCycle(rec_A, self.real_A) * lambda_A # Forward cycle object loss rec_A_object = roi_pooling(rec_A, self.real_A_bboxes, size=self.object_size) real_A_object = roi_pooling(self.real_A, self.real_A_bboxes, size=self.object_size) loss_cycle_A_object = self.criterionCycle(rec_A_object, real_A_object) * lambda_A # Backward cycle loss rec_B = self.netG_A(fake_A) loss_cycle_B = self.criterionCycle(rec_B, self.real_B) * lambda_B # Backward cycle object loss rec_B_object = roi_pooling(rec_B, self.real_B_bboxes, size=self.object_size) real_B_object = roi_pooling(self.real_B, self.real_B_bboxes, size=self.object_size) loss_cycle_B_object = self.criterionCycle(rec_B_object, real_B_object) * lambda_B # combined loss loss_G = loss_G_A + loss_G_B + loss_cycle_A + loss_cycle_B + loss_idt_A + loss_idt_B + 0.1 * ( loss_G_A_object + loss_G_B_object) + 0.1 * (loss_cycle_A_object + loss_cycle_B_object) loss_G.backward() self.fake_B = fake_B.data self.fake_A = fake_A.data self.rec_A = rec_A.data self.rec_B = rec_B.data self.real_A_object = real_A_object.data self.real_B_object = real_B_object.data self.fake_B_object = fake_B_object.data self.fake_A_object = fake_A_object.data self.loss_G_A = loss_G_A.data[0] self.loss_G_B = loss_G_B.data[0] self.loss_G_A_object = loss_G_A_object.data[0] self.loss_G_B_object = loss_G_B_object.data[0] self.loss_cycle_A = loss_cycle_A.data[0] self.loss_cycle_B = loss_cycle_B.data[0] self.loss_cycle_A_object = loss_cycle_A_object.data[0] self.loss_cycle_B_object = loss_cycle_B_object.data[0]