from util.train import execute_train, build_arg_parser # Training settings parser = build_arg_parser() parser.add_argument('--nheads', type=int, default=4, help='Number of attentions heads.') parser.add_argument('--alpha', type=float, default=0.2, help='Alpha for the leaky_relu.') args = parser.parse_args() execute_train(gnn_args=dict(nfeat=None, nhid=args.hidden, nodes_out=None, graph_out=None, dropout=args.dropout, device=None, first_conv_descr=dict(layer_type=GATLayer, args=dict( nheads=args.nheads, alpha=args.alpha )), middle_conv_descr=dict(layer_type=GATLayer, args=dict( nheads=args.nheads, alpha=args.alpha )), fc_layers=args.fc_layers, conv_layers=args.conv_layers, skip=args.skip, gru=args.gru, fixed=args.fixed, variable=args.variable), args=args)
execute_train(gnn_args=dict(nfeat=None, nhid=args.hidden, nodes_out=None, graph_out=None, dropout=args.dropout, device=None, first_conv_descr=dict(layer_type=PNALayer, args=dict( aggregators=args.aggregators.split(), scalers=args.scalers.split(), avg_d=None, towers=args.towers, self_loop=args.self_loop, divide_input=False, pretrans_layers=args.pretrans_layers, posttrans_layers=args.posttrans_layers )), middle_conv_descr=dict(layer_type=PNALayer, args=dict( aggregators=args.aggregators.split(), scalers=args.scalers.split(), avg_d=None, towers=args.towers, self_loop=args.self_loop, divide_input=True, pretrans_layers=args.pretrans_layers, posttrans_layers=args.posttrans_layers )), fc_layers=args.fc_layers, conv_layers=args.conv_layers, skip=args.skip, gru=args.gru, fixed=args.fixed, variable=args.variable), args=args)
'--gin_fc_layers', type=int, default=2, help='Number of fully connected layers after the aggregation.') parser.add_argument('--aggregation', type=str, default='mean', help='Type of LAF aggregation') args = parser.parse_args() execute_train(gnn_args=dict( nfeat=None, nhid=args.hidden, nodes_out=None, graph_out=None, dropout=args.dropout, device=None, first_conv_descr=dict(layer_type=GINLafLayer, args=dict(function=args.aggregation, fc_layers=args.gin_fc_layers)), middle_conv_descr=dict(layer_type=GINLafLayer, args=dict(function=args.aggregation, fc_layers=args.gin_fc_layers)), fc_layers=args.fc_layers, conv_layers=args.conv_layers, skip=args.skip, gru=args.gru, fixed=args.fixed, variable=args.variable), args=args)