def get_current_visuals(self): real_A = util.tensor2im(self.real_A.data) fake_B = util.tensor2im(self.fake_B.data) real_B = util.tensor2im(self.real_B.data) edge = util.atten2im(self.edge_out.data) self.output_A_I_3 = torch.cat([self.gray, self.gray, self.gray], 1) out_A_I = util.tensor2im(self.output_A_I_3.data) if self.opt.skip > 0: latent_real_A = util.tensor2im(self.latent_real_A.data) latent_show = util.latent2im(self.latent_real_A.data) if self.opt.patchD: fake_patch = util.tensor2im(self.fake_patch.data) real_patch = util.tensor2im(self.real_patch.data) if self.opt.patch_vgg: input_patch = util.tensor2im(self.input_patch.data) if not self.opt.self_attention: return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch), ('fake_patch', fake_patch), ('input_patch', input_patch)]) else: self_attention = util.atten2im(self.real_A_gray_o.data) return OrderedDict( [('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B), ('real_patch', real_patch), ('fake_patch', fake_patch), ('input_patch', input_patch), ('input_gray', self_attention), ('latent', latent_show), ('out_A_I', out_A_I), ('edge', edge)]) else: if not self.opt.self_attention: return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch), ('fake_patch', fake_patch)]) else: self_attention = util.atten2im(self.real_A_gray.data) return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch), ('fake_patch', fake_patch), ('self_attention', self_attention)]) else: if not self.opt.self_attention: return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B)]) else: self_attention = util.atten2im(self.real_A_gray_o.data) return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('self_attention', self_attention)]) else: if not self.opt.self_attention: return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B)]) else: self_attention = util.atten2im(self.real_A_gray.data) return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B), ('self_attention', self_attention)])
def get_current_visuals(self): real_A = util.tensor2im(self.real_A.data) fake_B = util.tensor2im(self.fake_B.data) real_B = util.tensor2im(self.real_B.data) if self.opt.skip > 0: latent_real_A = util.tensor2im(self.latent_real_A.data) latent_show = util.latent2im(self.latent_real_A.data) return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B)])
def get_current_visuals(self): real_A = util.tensor2im(self.real_A.data) fake_B = util.tensor2im(self.fake_B.data) real_B = util.tensor2im(self.real_B.data) if self.opt.skip > 0: latent_real_A = util.tensor2im(self.latent_real_A.data) latent_show = util.latent2im(self.latent_real_A.data) if self.opt.patchD: fake_patch = util.tensor2im(self.fake_patch.data) real_patch = util.tensor2im(self.real_patch.data) if self.opt.patch_vgg: input_patch = util.tensor2im(self.input_patch.data) if not self.opt.self_attention: return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch), ('fake_patch', fake_patch), ('input_patch', input_patch)]) else: self_attention = util.atten2im(self.real_A_gray.data) return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch), ('fake_patch', fake_patch), ('input_patch', input_patch), ('self_attention', self_attention)]) else: if not self.opt.self_attention: return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch), ('fake_patch', fake_patch)]) else: self_attention = util.atten2im(self.real_A_gray.data) return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B), ('real_patch', real_patch), ('fake_patch', fake_patch), ('self_attention', self_attention)]) else: if not self.opt.self_attention: return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('real_B', real_B)]) else: self_attention = util.atten2im(self.real_A_gray.data) return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B), ('latent_real_A', latent_real_A), ('latent_show', latent_show), ('self_attention', self_attention)]) else: if not self.opt.self_attention: return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B)]) else: self_attention = util.atten2im(self.real_A_gray.data) return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B), ('self_attention', self_attention)])