예제 #1
0
def Convert(model_file, output_file):
    model = util.ReadModel(model_file)
    params = {}
    for l in model.layer:
        for p in l.param:
            params['%s_%s' % (l.name, p.name)] = util.ParameterAsNumpy(p)
    for e in model.edge:
        for p in e.param:
            params['%s_%s_%s' %
                   (e.node1, e.node2, p.name)] = util.ParameterAsNumpy(p)

    scipy.io.savemat(output_file, params, oned_as='column')
예제 #2
0
파일: layer.py 프로젝트: klee141/deepnet
 def InitializeParameter(self, param):
     if param.initialization == deepnet_pb2.Parameter.CONSTANT:
         return np.zeros(tuple(param.dimensions)) + param.constant
     elif param.initialization == deepnet_pb2.Parameter.DENSE_GAUSSIAN:
         return param.sigma * np.random.randn(*tuple(param.dimensions))
     elif param.initialization == deepnet_pb2.Parameter.PRETRAINED:
         node_name = param.pretrained_model_node1
         if node_name == '':
             node_name = self.proto.name
         mat = None
         for pretrained_model in param.pretrained_model:
             model = util.ReadModel(pretrained_model)
             # Find the relevant node in the model.
             node = next(n for n in model.layer if n.name == node_name)
             # Find the relevant parameter in the node.
             pretrained_param = next(p for p in node.param
                                     if p.name == param.name)
             assert pretrained_param.mat != '',\
                     'Pretrained param %s in layer %s of model %s is empty!!' % (
                       pretrained_param.name, node.name, pretrained_model)
             this_mat = util.ParameterAsNumpy(pretrained_param)
             if mat is None:
                 mat = this_mat
             else:
                 mat += this_mat
         return mat / len(param.pretrained_model)
     else:
         raise Exception('Unknown parameter initialization.')
예제 #3
0
 def InitializeParameter(self, param):
   if param.initialization == deepnet_pb2.Parameter.CONSTANT:
     return np.zeros(tuple(param.dimensions)) + param.constant
   elif param.initialization == deepnet_pb2.Parameter.DENSE_GAUSSIAN:
     return param.sigma * np.random.randn(*tuple(param.dimensions))
   elif param.initialization == deepnet_pb2.Parameter.DENSE_UNIFORM:
     return param.sigma * (2 * np.random.rand(*tuple(param.dimensions)) - 1)
   elif param.initialization == deepnet_pb2.Parameter.DENSE_GAUSSIAN_SQRT_FAN_IN:
     if param.conv:
       fan_in = np.prod(param.dimensions[0])
     else:
       fan_in = np.prod(param.dimensions[1])
     stddev = param.sigma / np.sqrt(fan_in)
     return stddev * np.random.randn(*tuple(param.dimensions))
   elif param.initialization == deepnet_pb2.Parameter.DENSE_UNIFORM_SQRT_FAN_IN:
     if param.conv:
       fan_in = np.prod(param.dimensions[0])
     else:
       fan_in = np.prod(param.dimensions[1])
     stddev = param.sigma / np.sqrt(fan_in)
     return stddev * (2 * np.random.rand(*tuple(param.dimensions)) - 1)
   elif param.initialization == deepnet_pb2.Parameter.PRETRAINED:
     node1_name = param.pretrained_model_node1
     node2_name = param.pretrained_model_node2
     if node1_name == '':
       node1_name = self.proto.node1
     if node2_name == '':
       node2_name = self.proto.node2
     mat = None
     for pretrained_model in param.pretrained_model:
       model = util.ReadModel(pretrained_model)
       edge = next(e for e in model.edge if e.node1 == node1_name and e.node2 == node2_name)
       pretrained_param = next(p for p in edge.param if p.name == param.name)
       assert pretrained_param.mat != '',\
               'Pretrained param %s in edge %s:%s of model %s is empty!!' % (
                 pretrained_param.name, edge.node1, edge.node2, pretrained_model)
       if param.transpose_pretrained:
         assert param.dimensions == pretrained_param.dimensions[::-1],\
             'Param has shape %s but transposed pretrained param has shape %s' % (
               param.dimensions, reversed(pretrained_param.dimensions))
       else:
         assert param.dimensions == pretrained_param.dimensions,\
             'Param has shape %s but pretrained param has shape %s' % (
               param.dimensions, pretrained_param.dimensions)
       this_mat = util.ParameterAsNumpy(pretrained_param)
       if param.transpose_pretrained:
         this_mat = this_mat.T
       if mat is None:
         mat = this_mat
       else:
         mat += this_mat
     return mat / len(param.pretrained_model)
   else:
     raise Exception('Unknown parameter initialization.')
예제 #4
0
파일: edge.py 프로젝트: yanling2011/deepnet
    def LoadParams(self, tied_to=None):
        """Load the parameters for this edge.

    Load the parameters if present in self.proto. Otherwise initialize them
    appropriately.
    """
        node1 = self.node1
        node2 = self.node2
        proto = self.proto
        self.hyperparams = proto.hyperparams
        param_names = [param.name for param in proto.param]
        for param in proto.param:
            if param.conv or param.local:
                n_locs = self.AllocateMemoryForConvolutions(
                    param, node1, node2)
            if not param.dimensions:
                if param.conv:
                    cv = param.conv_params
                    dims = [cv.num_filters, cv.size**2 * cv.num_colors]
                elif param.local:
                    dims = [
                        cv.num_filters, n_locs**2 * cv.size**2 * cv.num_colors
                    ]
                else:
                    dims = [
                        node1.numlabels * node1.dimensions,
                        node2.numlabels * node2.dimensions
                    ]
                param.dimensions.extend(dims)
            if tied_to:
                if self.transpose:
                    self.params[param.name] = tied_to.params[param.name].T
                else:
                    self.params[param.name] = tied_to.params[param.name]
                mat = self.params[param.name]
            else:
                if param.mat:  # and 'grad' not in param.name:
                    mat = util.ParameterAsNumpy(param)
                else:
                    mat = self.InitializeParameter(param)
                self.params[param.name] = cm.CUDAMatrix(mat)
            if param.name == 'weight':
                self.temp = cm.empty(mat.shape)
                #self.temp2 = cm.empty(mat.shape)
                self.gradient = cm.empty(mat.shape)
                self.grad_weight = cm.empty(mat.shape)
                self.gradient.assign(0)
                self.grad_weight.assign(0)
        if self.t_op and (self.t_op.optimizer == deepnet_pb2.Operation.PCD or \
          self.t_op.optimizer == deepnet_pb2.Operation.CD):
            self.suff_stats = cm.empty(
                (self.node1.numlabels * self.node1.dimensions,
                 self.node2.numlabels * self.node2.dimensions))
예제 #5
0
 def LoadParams(self, proto):
   self.hyperparams = proto.hyperparams
   param_names = [param.name for param in proto.param]
   for param in proto.param:
     if not param.dimensions:
       param.dimensions.extend([proto.numlabels * proto.dimensions])
     if param.mat:
       mat = util.ParameterAsNumpy(param).reshape(-1, 1)
     else:
       mat = self.InitializeParameter(param).reshape(-1, 1)
     self.params[param.name] = cm.CUDAMatrix(mat)
     if param.name == 'bias':
       self.grad_bias = cm.empty(mat.shape)
       self.grad_bias.assign(0)
   self.sample_input = self.hyperparams.sample_input
예제 #6
0
파일: layer.py 프로젝트: klee141/deepnet
    def LoadParams(self, proto):
        self.hyperparams = proto.hyperparams
        param_names = [param.name for param in proto.param]
        for param in proto.param:
            if 'grad_' + param.name not in param_names and not param.name.startswith(
                    'grad_'):
                grad_p = deepnet_pb2.Parameter()
                grad_p.name = 'grad_' + param.name
                proto.param.extend([grad_p])

        for param in proto.param:
            if not param.dimensions:
                param.dimensions.extend([proto.numlabels * proto.dimensions])
            if param.mat and 'grad' not in param.name:
                mat = util.ParameterAsNumpy(param).reshape(-1, 1)
            else:
                mat = self.InitializeParameter(param).reshape(-1, 1)
            self.params[param.name] = cm.CUDAMatrix(mat)
예제 #7
0
    def LoadParams(self, proto, t_op=None, tied_to=None):
        """Load the parameters for this edge.

    Load the parameters if present in self.proto. Otherwise initialize them
    appropriately.
    """
        param_names = [param.name for param in proto.param]
        for param in proto.param:
            assert param.dimensions, 'Empty dimensions'
            if tied_to:
                if self.transpose:
                    self.params[param.name] = tied_to.params[param.name].T
                else:
                    self.params[param.name] = tied_to.params[param.name]
                mat = self.params[param.name]
            else:
                if param.mat:
                    mat = util.ParameterAsNumpy(param)
                else:
                    mat = self.InitializeParameter(param)
                self.params[param.name] = cm.CUDAMatrix(mat)
예제 #8
0
 def InitializeParameter(self, param):
   if param.initialization == deepnet_pb2.Parameter.CONSTANT:
     return np.zeros(tuple(param.dimensions)) + param.constant
   elif param.initialization == deepnet_pb2.Parameter.DENSE_GAUSSIAN:
     return param.sigma * np.random.randn(*tuple(param.dimensions))
   elif param.initialization == deepnet_pb2.Parameter.PRETRAINED:
     node_name = param.pretrained_model_node1
     if node_name == '':
       node_name = self.proto.name
     mat = None
     for pretrained_model in param.pretrained_model:
       if os.path.splitext(pretrained_model)[1] == '.npz':
         model_file = os.path.join(self.prefix, pretrained_model)
         npzfile = np.load(model_file)
         if param.name == 'bias':
           this_mat = np.nan_to_num(npzfile['mean'] / npzfile['std'])
         elif param.name == 'precision':
           this_mat = np.nan_to_num(1. / npzfile['std'])
       else:
         model_file = os.path.join(self.prefix, pretrained_model)
         model = util.ReadModel(model_file)
         # Find the relevant node in the model.
         node = next(n for n in model.layer if n.name == node_name)
         # Find the relevant parameter in the node.
         pretrained_param = next(p for p in node.param if p.name == param.name)
         assert pretrained_param.mat != '',\
                 'Pretrained param %s in layer %s of model %s is empty!!' % (
                   pretrained_param.name, node.name, pretrained_model)
         this_mat = util.ParameterAsNumpy(pretrained_param)
       if mat is None:
         mat = this_mat
       else:
         mat += this_mat
     return mat / len(param.pretrained_model)
   else:
     raise Exception('Unknown parameter initialization.')
예제 #9
0
  def LoadParams(self, proto, node1, node2):
    """Load the parameters for this edge.

    Load the parameters if present in the proto. Otherwise initialize them
    appropriately.
    Args:
      proto: Protocol buffer object that describes this edge.
      node1: Layer object at the input to this edge.
      node2: Layer object at the output of this edge.
   """
    self.hyperparams = proto.hyperparams
    param_names = [param.name for param in proto.param]
    for param in proto.param:
      if 'grad_'+param.name not in param_names and not param.name.startswith(
        'grad_') and not param.name.startswith('gradstats_'):
        grad_p = deepnet_pb2.Parameter()
        grad_p.CopyFrom(param)
        grad_p.name = 'grad_' + param.name
        proto.param.extend([grad_p])
      if 'gradstats_'+param.name not in param_names and not param.name.startswith(
        'gradstats_') and not param.name.startswith('grad_'):
        grad_stats_p = deepnet_pb2.Parameter()
        grad_p.CopyFrom(param)
        grad_stats_p.name = 'gradstats_' + param.name
        grad_stats_p.constant = 1.0
        proto.param.extend([grad_stats_p])

    for param in proto.param:
      if not param.dimensions:
        if param.conv:
          self.conv = True
          self.conv_params = param.conv_params
          param.dimensions.extend(
            [self.conv_params.num_filters,
             self.conv_params.size**2 * self.conv_params.num_colors])
          self.input_t = cm.CUDAMatrix(np.zeros(node1.state.shape[::-1]))
          self.output_t = cm.CUDAMatrix(np.zeros(node2.state.shape[::-1]))
          self.output_t2 = cm.CUDAMatrix(np.zeros(node2.state.shape[::-1]))
          if param.conv_params.max_pool:
            numdims, numimages = node1.state.shape
            num_colors = param.conv_params.num_colors
            num_filters = param.conv_params.num_filters
            padding = param.conv_params.padding
            size = param.conv_params.size
            stride = param.conv_params.stride
            assert numdims % num_colors == 0
            x = int(np.sqrt(numdims / num_colors))
            assert x**2 == numdims / num_colors
            n_locs = (x + 2 * padding - size) / stride + 1
            self.unpooled_layer = cm.CUDAMatrix(np.zeros((numimages, n_locs**2 * num_filters)))
        else:
          param.dimensions.extend([node1.numlabels * node1.dimensions,
                                   node2.numlabels * node2.dimensions])
      if param.mat and 'grad' not in param.name:
        print 'Loading saved parameters'
        mat = util.ParameterAsNumpy(param)
      else:
        mat = self.InitializeParameter(param)
      self.params[param.name] = cm.CUDAMatrix(mat)
      if param.name == 'weight':
        self.temp = cm.empty(mat.shape)
        self.temp2 = cm.empty(mat.shape)