def basic_iris(): iris = datasets.load_iris() scaler = pre.Scaler() X = scaler.fit_transform(iris.data) y = ut.all_to_sparse( iris.target, max(iris.target) + 1 ) X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets(np.array(X), np.array(y), "iris") X_val = np.vstack([X_val, X_test]) y_val = np.vstack([y_val, y_test]) thetas, costs, val_costs = neur.gradient_decent(np.array(X), np.array(y), #hidden_layer_sz = 11, hidden_layer_sz = 20, iter = 8000, wd_coef = 0.0, learning_rate = 0.07, momentum_multiplier = 0.3, rand_init_epsilon = 0.12, do_early_stopping = True, #do_dropout = True, dropout_percentage = 0.9, do_learning_adapt = True, X_val = np.array(X_val), y_val = np.array(y_val)) h_x, a = neur.forward_prop(X_test, thetas) print "percentage correct predictions: ", ut.percent_equal(ut.map_to_max_binary_result(h_x), y_test) print "training error:", costs[-1:][0] print "validation error:", val_costs[-1:][0] print "lowest validation error:", min(val_costs) plt.plot(costs, label='cost') plt.plot(val_costs, label='val cost') plt.legend() plt.ylabel('error rate') plt.show()
def rbm_example(): digits = datasets.load_digits() X = digits.images.reshape((digits.images.shape[0], -1)) X = (X / 16.0) y = ut.all_to_sparse(digits.target, max(digits.target) + 1) X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets( np.array(X), np.array(y), "digits_rbm", True) X_val = np.vstack([X_val, X_test]) y_val = np.vstack([y_val, y_test]) hid_layer = 300 bm = rbm.RBM(64, hid_layer) #exit() costs = bm.optimize(neur.mini_batch_generator(X), 2000, 0.08) print "validate squared_error", bm.validate(X_val) #exit() filename = './random_set_cache/data_rbm_run.pkl' first_layer_weights = np.hstack([np.zeros((hid_layer, 1)), bm.weights]) #pickle.dump(first_layer_weights, open(filename, 'w')) # first_layer_weights = pickle.load(open(filename, 'r')) thetas = neur.create_initial_thetas([64, hid_layer, 10], 0.12) thetas[0] = first_layer_weights thetas, costs, val_costs = neur.gradient_decent_gen( izip(neur.mini_batch_generator(X, 10), neur.mini_batch_generator(y, 10)), learning_rate=0.05, hidden_layer_sz=hid_layer, iter=8000, thetas=thetas, X_val=X_val, y_val=y_val, do_early_stopping=True) h_x, a = neur.forward_prop(X_test, thetas) print "percentage correct predictions: ", ut.percent_equal( ut.map_to_max_binary_result(h_x), y_test) print "training error:", costs[-1:][0] print "validation error:", val_costs[-1:][0] print "lowest validation error:", min(val_costs) plt.plot(costs, label='cost') plt.plot(val_costs, label='val cost') plt.legend() plt.ylabel('error rate') plt.show()
def rbm_example(): digits = datasets.load_digits() X = digits.images.reshape((digits.images.shape[0], -1)) X = (X / 16.0) y = ut.all_to_sparse( digits.target, max(digits.target) + 1 ) X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets(np.array(X), np.array(y), "digits_rbm", True) X_val = np.vstack([X_val, X_test]) y_val = np.vstack([y_val, y_test]) hid_layer = 300 bm = rbm.RBM(64, hid_layer) #exit() costs = bm.optimize(neur.mini_batch_generator(X), 2000, 0.08) print "validate squared_error", bm.validate(X_val) #exit() filename = './random_set_cache/data_rbm_run.pkl' first_layer_weights = np.hstack([np.zeros((hid_layer,1)), bm.weights]) #pickle.dump(first_layer_weights, open(filename, 'w')) # first_layer_weights = pickle.load(open(filename, 'r')) thetas = neur.create_initial_thetas([64, hid_layer, 10], 0.12) thetas[0] = first_layer_weights thetas, costs, val_costs = neur.gradient_decent_gen(izip(neur.mini_batch_generator(X, 10), neur.mini_batch_generator(y, 10)), learning_rate = 0.05, hidden_layer_sz = hid_layer, iter = 8000, thetas = thetas, X_val = X_val, y_val = y_val, do_early_stopping = True) h_x, a = neur.forward_prop(X_test, thetas) print "percentage correct predictions: ", ut.percent_equal(ut.map_to_max_binary_result(h_x), y_test) print "training error:", costs[-1:][0] print "validation error:", val_costs[-1:][0] print "lowest validation error:", min(val_costs) plt.plot(costs, label='cost') plt.plot(val_costs, label='val cost') plt.legend() plt.ylabel('error rate') plt.show()
def basic_gradient_descent(): digits = datasets.load_digits() # iris = datasets.load_iris() X = digits.images.reshape((digits.images.shape[0], -1)) scaler = pre.Scaler() X = scaler.fit_transform(X) y = ut.all_to_sparse(digits.target, max(digits.target) + 1) X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets( np.array(X), np.array(y), "basic_grad_descent_digits") X_val = np.vstack([X_val, X_test]) y_val = np.vstack([y_val, y_test]) thetas, costs, val_costs = neur.gradient_decent_gen( izip(neur.mini_batch_generator(X, 10), neur.mini_batch_generator(y, 10)), #hidden_layer_sz = 11, hidden_layer_sz=100, iter=1000, wd_coef=0.0, learning_rate=0.1, momentum_multiplier=0.9, rand_init_epsilon=0.012, do_early_stopping=True, #do_dropout = True, #dropout_percentage = 0.8, #do_learning_adapt = True, X_val=np.array(X_val), y_val=np.array(y_val)) h_x, a = neur.forward_prop(X_test, thetas) binary_result = ut.map_to_max_binary_result(h_x) print "percentage correct predictions: ", ut.percent_equal( binary_result, y_test) print "training error:", costs[-1:][0] print "validation error:", val_costs[-1:][0] print "lowest validation error:", min(val_costs) plt.plot(costs, label='cost') plt.plot(val_costs, label='val cost') plt.legend() plt.ylabel('error rate') plt.show()
def basic_gradient_descent(): digits = datasets.load_digits() # iris = datasets.load_iris() X = digits.images.reshape((digits.images.shape[0], -1)) scaler = pre.Scaler() X = scaler.fit_transform(X) y = ut.all_to_sparse(digits.target, max(digits.target) + 1) X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets( np.array(X), np.array(y), "basic_grad_descent_digits" ) X_val = np.vstack([X_val, X_test]) y_val = np.vstack([y_val, y_test]) thetas, costs, val_costs = neur.gradient_decent_gen( izip(neur.mini_batch_generator(X, 10), neur.mini_batch_generator(y, 10)), # hidden_layer_sz = 11, hidden_layer_sz=100, iter=1000, wd_coef=0.0, learning_rate=0.1, momentum_multiplier=0.9, rand_init_epsilon=0.012, do_early_stopping=True, # do_dropout = True, # dropout_percentage = 0.8, # do_learning_adapt = True, X_val=np.array(X_val), y_val=np.array(y_val), ) h_x, a = neur.forward_prop(X_test, thetas) binary_result = ut.map_to_max_binary_result(h_x) print "percentage correct predictions: ", ut.percent_equal(binary_result, y_test) print "training error:", costs[-1:][0] print "validation error:", val_costs[-1:][0] print "lowest validation error:", min(val_costs) plt.plot(costs, label="cost") plt.plot(val_costs, label="val cost") plt.legend() plt.ylabel("error rate") plt.show()
def basic_gradient_descent(): digits = datasets.load_digits() # iris = datasets.load_iris() X = digits.images.reshape((digits.images.shape[0], -1)) scaler = pre.Scaler() X = scaler.fit_transform(X) y = ut.all_to_sparse(digits.target, max(digits.target) + 1) X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets( gpu.as_garray(X), gpu.as_garray(y), "digits") X_val = gpu.concatenate([X_val, X_test]) y_val = gpu.concatenate([y_val, y_test]) thetas, costs, val_costs = neur.gradient_decent( gpu.as_garray(X), gpu.as_garray(y), #hidden_layer_sz = 11, hidden_layer_sz=45, iter=500, wd_coef=0.0, learning_rate=0.25, momentum_multiplier=0.9, rand_init_epsilon=0.012, do_early_stopping=True, #do_dropout = True, dropout_percentage=0.7, #do_learning_adapt = True, X_val=gpu.as_garray(X_val), y_val=gpu.as_garray(y_val)) h_x, a = neur.forward_prop(X_test, thetas) h_x = map(lambda x: x.as_numpy_array(), h_x) print "percentage correct predictions: ", ut.percent_equal( ut.map_to_max_binary_result(h_x), y_test.as_numpy_array()) print "training error:", costs[-1:][0] print "validation error:", val_costs[-1:][0] print "lowest validation error:", min(val_costs) plt.plot(costs, label='cost') plt.plot(val_costs, label='val cost') plt.legend() plt.ylabel('error rate')
def basic_iris(): iris = datasets.load_iris() scaler = pre.Scaler() X = scaler.fit_transform(iris.data) y = ut.all_to_sparse(iris.target, max(iris.target) + 1) X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets( np.array(X), np.array(y), "iris") X_val = np.vstack([X_val, X_test]) y_val = np.vstack([y_val, y_test]) thetas, costs, val_costs = neur.gradient_decent( np.array(X), np.array(y), #hidden_layer_sz = 11, hidden_layer_sz=20, iter=8000, wd_coef=0.0, learning_rate=0.07, momentum_multiplier=0.3, rand_init_epsilon=0.12, do_early_stopping=True, #do_dropout = True, dropout_percentage=0.9, do_learning_adapt=True, X_val=np.array(X_val), y_val=np.array(y_val)) h_x, a = neur.forward_prop(X_test, thetas) print "percentage correct predictions: ", ut.percent_equal( ut.map_to_max_binary_result(h_x), y_test) print "training error:", costs[-1:][0] print "validation error:", val_costs[-1:][0] print "lowest validation error:", min(val_costs) plt.plot(costs, label='cost') plt.plot(val_costs, label='val cost') plt.legend() plt.ylabel('error rate') plt.show()
def basic_gradient_descent(): digits = datasets.load_digits() # iris = datasets.load_iris() X = digits.images.reshape((digits.images.shape[0], -1)) scaler = pre.Scaler() X = scaler.fit_transform(X) y = ut.all_to_sparse( digits.target, max(digits.target) + 1 ) X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets(gpu.as_garray(X), gpu.as_garray(y), "digits") X_val = gpu.concatenate([X_val, X_test]) y_val = gpu.concatenate([y_val, y_test]) thetas, costs, val_costs = neur.gradient_decent(gpu.as_garray(X), gpu.as_garray(y), #hidden_layer_sz = 11, hidden_layer_sz = 45, iter = 500, wd_coef = 0.0, learning_rate = 0.25, momentum_multiplier = 0.9, rand_init_epsilon = 0.012, do_early_stopping = True, #do_dropout = True, dropout_percentage = 0.7, #do_learning_adapt = True, X_val = gpu.as_garray(X_val), y_val = gpu.as_garray(y_val)) h_x, a = neur.forward_prop(X_test, thetas) h_x = map(lambda x: x.as_numpy_array(), h_x) print "percentage correct predictions: ", ut.percent_equal(ut.map_to_max_binary_result(h_x), y_test.as_numpy_array()) print "training error:", costs[-1:][0] print "validation error:", val_costs[-1:][0] print "lowest validation error:", min(val_costs) plt.plot(costs, label='cost') plt.plot(val_costs, label='val cost') plt.legend() plt.ylabel('error rate')