def _import_gsp_file(self, input_file, year_span='2011-12'): reader = csv.DictReader(input_file) headers = reader.next() for row in reader: #we only care about the GSP (Gross State Product) #which is mislabeled as GSDP if not row['Sector'] == 'GSDP (2004-05 Prices)': continue state_name = util.clean_state_name(row['State Name']) gsp = row[year_span] #add the gsp information to the relevant State for state in self.states: if state.name == state_name and state.classification == 'total': state.gsp = gsp
def _import_mpce_file(self, input_file, mpce_type, classification): #http://www.blog.pythonlibrary.org/2014/02/26/python-101-reading-and-writing-csv-files/ reader = csv.reader(input_file) for row in reader: #The first row is just the headers, so we skip it if row[0] == 'state': continue #remove extra spaces around each element in the row row = [value.strip() for value in row] row[0] = util.clean_state_name(row[0]) #Create a Mpce object - makes things easier to insert #This is not a very efficient method, but it works mpce = Mpce(mpce_type, classification, *row) #add the row to the mpce table insert = Mpce.__table__.insert() self.connection.execute(insert, mpce.__dict__)