예제 #1
0
def model(X,
          Y,
          learning_rate=0.01,
          num_iteration=15000,
          initialization='He',
          print_cost=False):

    grads = {}
    costs = []
    layer_dims = [X.shape[0], 10, 5, 1]

    if initialization.lower() == 'zeros':
        params = initialize_parameters_zeros(layer_dims)
    elif initialization.lower() == 'random':
        params = initialize_parameters_random(layer_dims)
    elif initialization.lower() == 'he':
        params = initialize_parameters_he(layer_dims)

    for i in range(0, num_iteration):
        a3, cache = forward_propagation(X, params)
        cost = compute_loss(a3, Y)
        grads = backward_propagation(X, Y, cache)
        params = update_parameters(params, grads, learning_rate)

        if i % 1000 == 0 and print_cost:
            print('cost after {} iterations : {}'.format(i, cost))
            costs.append(cost)

    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations')
    plt.title('learning_rate =' + str(learning_rate))
    plt.show()

    return params
예제 #2
0
파일: model.py 프로젝트: wcAlex/QA-XL
    def forward(self, data):
        data = prepare_data(data)
        full_p_states, p_mask, full_q_states, q_mask = self.encode(data)
        logits1, logits2, has_log = self.decode(full_p_states, p_mask,
                                                full_q_states, q_mask)
        loss = compute_loss(logits1, logits2, has_log, data['y1'], data['y2'],
                            data['has_ans'])

        self.train_loss.update(loss.data.item())
        del full_p_states, p_mask, full_q_states, q_mask, logits1, logits2, has_log
        return loss
    for idx, decay_rate in enumerate(decay):
        np.random.seed(
            7
        )  # seed NumPy's random number generator for reproducibility of results
        # Initialize neural network
        nn = MLPClassifier(hidden_layer_sizes=(5, 2),
                           random_state=7,
                           max_iter=1,
                           warm_start=True)
        nn.fit(X_train, y_train)

        # Initialize weights
        nn.coefs_, nn.intercepts_ = init_weights(X_train.shape[1],
                                                 list(nn.hidden_layer_sizes))
        loss_next = compute_loss(X_train, y_train, nn)

        T = T_init
        loss = []
        start = time.time()
        for i in range(num_iters):
            # Save current parameters
            coefs_prev = nn.coefs_
            intercepts_prev = nn.intercepts_
            loss_prev = loss_next

            if debug:
                print('Iteration # %d' % i)
                print('Loss = ', loss_prev)

            # Update parameters
    def optimize_ransac(self, num_iter, rot_loss_w, num_ransac_iter,
                        inlier_thr, vis):
        """

        :param num_iter:
        :param rot_loss_w:
        :param num_ransac_iter:
        :param inlier_thr:
        :param vis:
        :return:
        """
        max_inliers = None
        for n in range(num_ransac_iter):
            # sample random num_points from data to optimize paramters
            print("\n training with {} data points".format(
                self.num_train_points))
            train_indx = random.sample(range(self.num_points),
                                       self.num_train_points)
            train_trans_B_G = torch.stack(
                [self.trans_B_G[i] for i in train_indx], dim=0)
            train_rot_B_G = torch.stack([self.rot_B_G[i] for i in train_indx],
                                        dim=0)
            train_trans_C_A = torch.stack(
                [self.trans_C_A[i] for i in train_indx], dim=0)
            train_rot_C_A = torch.stack([self.rot_C_A[i] for i in train_indx],
                                        dim=0)

            test_trans_B_G = torch.stack([
                self.trans_B_G[i]
                for i in range(self.num_points) if i not in train_indx
            ],
                                         dim=0)
            test_rot_B_G = torch.stack([
                self.rot_B_G[i]
                for i in range(self.num_points) if i not in train_indx
            ],
                                       dim=0)
            test_trans_C_A = torch.stack([
                self.trans_C_A[i]
                for i in range(self.num_points) if i not in train_indx
            ],
                                         dim=0)
            test_rot_C_A = torch.stack([
                self.rot_C_A[i]
                for i in range(self.num_points) if i not in train_indx
            ],
                                       dim=0)

            # start with some random guess
            quat_B_C = torch.rand(1, 3).double().requires_grad_(True)
            trans_B_C = torch.rand(1, 3).double().requires_grad_(True)
            quat_G_A = torch.rand(1, 3).double().requires_grad_(True)
            trans_G_A = torch.rand(1, 3).double().requires_grad_(True)
            optimizer = optim.Adam([quat_B_C, trans_B_C, trans_G_A, quat_G_A],
                                   lr=0.1)
            criterion = torch.nn.MSELoss(reduction='none')
            best_train_loss, best_train_quat_B_C, best_train_trans_B_C, best_train_quat_G_A, best_train_trans_G_A = \
                None, None, None, None, None

            ###################
            # optimize on the train set the B<-->C & G<-->A
            for it in range(num_iter):
                _, train_loss = compute_loss(train_trans_B_G, train_rot_B_G,
                                             train_trans_C_A, train_rot_C_A,
                                             trans_G_A, quat_G_A, trans_B_C,
                                             quat_B_C, criterion, rot_loss_w)
                optimizer.zero_grad()
                train_loss.backward()
                optimizer.step()

                if best_train_loss is None or train_loss.item(
                ) < best_train_loss:
                    best_train_loss = train_loss.item()
                    best_train_quat_B_C = quat_B_C.detach().numpy()
                    best_train_trans_B_C = trans_B_C.detach().numpy()
                    best_train_quat_G_A = quat_G_A.detach().numpy()
                    best_train_trans_G_A = trans_G_A.detach().numpy()

                if it % 100 == 0:
                    print("train_loss = {:05f}".format(train_loss.item()))

            ###################
            # find inliers
            with torch.no_grad():
                test_loss, _ = compute_loss(
                    test_trans_B_G, test_rot_B_G, test_trans_C_A, test_rot_C_A,
                    torch.from_numpy(best_train_trans_G_A),
                    torch.from_numpy(best_train_quat_G_A),
                    torch.from_numpy(best_train_trans_B_C),
                    torch.from_numpy(best_train_quat_B_C), criterion,
                    rot_loss_w)

            # include all inliers in train set
            num_inliers = 0
            for indx, l in enumerate(test_loss):
                if l.item() < inlier_thr:
                    train_trans_B_G = torch.cat(
                        (train_trans_B_G, test_trans_B_G[indx].unsqueeze_(0)),
                        dim=0)
                    train_rot_B_G = torch.cat(
                        (train_rot_B_G, test_rot_B_G[indx].unsqueeze_(0)),
                        dim=0)
                    train_trans_C_A = torch.cat(
                        (train_trans_C_A, test_trans_C_A[indx].unsqueeze_(0)),
                        dim=0)
                    train_rot_C_A = torch.cat(
                        (train_rot_C_A, test_rot_C_A[indx].unsqueeze_(0)),
                        dim=0)
                    num_inliers += 1
            print("num_inliers = {}".format(num_inliers))

            # fine tune the params
            if num_inliers == 0:
                continue
            if max_inliers is None or num_inliers > max_inliers:
                max_inliers = num_inliers
                print("training with {} data points".format(
                    train_trans_B_G.shape[0]))
                # train again
                best_loss, best_quat_B_C, best_trans_B_C, best_quat_G_A, best_trans_G_A = None, None, None, None, None
                for it in range(num_iter):
                    # optimize paramters
                    optimizer.zero_grad()
                    _, train_loss = compute_loss(train_trans_B_G,
                                                 train_rot_B_G,
                                                 train_trans_C_A,
                                                 train_rot_C_A, trans_G_A,
                                                 quat_G_A, trans_B_C, quat_B_C,
                                                 criterion, rot_loss_w)
                    if best_loss is None or train_loss.item() < best_loss:
                        best_loss = train_loss.item()
                        best_quat_B_C = quat_B_C.detach().numpy()
                        best_trans_B_C = trans_B_C[0].detach().numpy()
                        best_trans_G_A = trans_G_A[0].detach().numpy()
                    train_loss.backward()
                    optimizer.step()
                    if it % 100 == 0:
                        print("train_loss = {:05f}".format(train_loss.item()))

        best_rot_B_C, best_quat_B_C = quat2mat(torch.from_numpy(best_quat_B_C))
        best_rot_B_C, best_quat_B_C = best_rot_B_C[0].detach().numpy(
        ), best_quat_B_C[0].detach().numpy()

        print("\n for B<-->C ")
        cmd = "rosrun tf static_transform_publisher " + str(float(best_trans_B_C[0])) + ' ' + \
              str(float(best_trans_B_C[1])) + ' ' + str(float(best_trans_B_C[2])) + ' ' + str(best_quat_B_C[1]) + ' ' \
              + str(best_quat_B_C[2]) + ' ' + str(best_quat_B_C[3]) + ' ' + str(best_quat_B_C[0]) + ' ' + \
              self.base_frame + ' '+ self.camera_frame + ' 10'
        print("Run Command")
        print(cmd)

        # plot the points for visualization
        if vis:
            trans_B_G_A = self.trans_B_G.numpy().reshape(-1, 3) + np.array([
                np.matmul(self.rot_B_G[i].numpy(),
                          best_trans_G_A.reshape(-1, 3).T).T
                for i in range(self.num_points)
            ]).reshape(-1, 3)
            trans_B_C_A = np.matmul(best_rot_B_C,
                                    self.trans_C_A.numpy().reshape(
                                        -1, 3).T).T + best_trans_B_C.reshape(
                                            -1, 3)
            ax = plt.axes(projection='3d')
            ax.scatter3D(trans_B_G_A[:, 0], trans_B_G_A[:, 1], trans_B_G_A[:,
                                                                           2])
            ax.scatter3D(trans_B_C_A[:, 0],
                         trans_B_C_A[:, 1],
                         trans_B_C_A[:, 2],
                         color='red')
            scatter1_proxy = matplotlib.lines.Line2D([0], [0],
                                                     linestyle="none",
                                                     marker='o')
            scatter2_proxy = matplotlib.lines.Line2D([0], [0],
                                                     linestyle="none",
                                                     c='red',
                                                     marker='o')
            ax.legend([scatter1_proxy, scatter2_proxy],
                      ['Base to Ar from Gripper', 'Base to Ar from Camera'],
                      numpoints=1)
            plt.show()
예제 #5
0
for i, (im, file_name) in enumerate(dataset_loader):
    im = im.cuda()

    # Prepare hints, mask, and get current classification
    data, target = util.get_colorization_data(im, opt, model, classifier)
    opt.target = opt.target if opt.targeted else target
    optimizer = torch.optim.Adam(
        [data['hints'].requires_grad_(), data['mask'].requires_grad_()],
        lr=opt.lr,
        betas=(0.9, 0.999))

    prev_diff = 0
    for itr in range(opt.num_iter):
        out_rgb, y = util.forward(model, classifier, opt, data)
        val, idx, labels = util.compute_class(opt, y)
        loss = util.compute_loss(opt, y, criterion)
        print(f'[{itr+1}/{opt.num_iter}] Loss: {loss:.3f} Labels: {labels}')
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print("%.5f" % (loss.item()))

        diff = val[0] - val[1]

        if opt.targeted:
            if idx[0] == opt.target and diff > threshold and (
                    diff - prev_diff).abs() < 1e-3:
                break
        else:
            if idx[0] != opt.target and diff > threshold and (
                    diff - prev_diff).abs() < 1e-3:
예제 #6
0
    def optimize(self, num_iter, rot_loss_w, vis):
        # start with some random guess
        quat_B_C = torch.rand(1, 3).requires_grad_(True)
        trans_B_C = torch.rand(1, 3).requires_grad_(True)
        quat_G_A = torch.rand(1, 3).requires_grad_(True)
        trans_G_A = torch.rand(1, 3).requires_grad_(True)
        optimizer = optim.Adam([quat_B_C, trans_B_C, trans_G_A, quat_G_A],
                               lr=0.1)
        criterion = torch.nn.MSELoss(reduction='none')
        best_quat_B_C, best_trans_B_C, best_loss = None, None, None

        ###################
        # optimize the B<-->C & G<-->A
        for it in range(num_iter):
            _, loss = compute_loss(self.trans_B_G, self.rot_B_G,
                                   self.trans_C_A, self.rot_C_A, trans_G_A,
                                   quat_G_A, trans_B_C, quat_B_C, criterion,
                                   rot_loss_w)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if best_loss is None or best_loss > loss.item():
                best_loss = loss.item()
                best_quat_B_C = quat_B_C.detach().numpy()
                best_trans_B_C = trans_B_C[0].detach().numpy()
                best_trans_G_A = trans_G_A[0].detach().numpy()

            print("iter = {:04d} loss = {}".format(it, loss.item()))

        best_rot_B_C, best_quat_B_C = quat2mat(torch.from_numpy(best_quat_B_C))
        best_rot_B_C, best_quat_B_C = best_rot_B_C[0].detach().numpy(
        ), best_quat_B_C[0].detach().numpy()

        print("\n for B<-->C ")
        print(" org_rot = {} \n pred_rot = {}".format(self.gt_rot_B_C.numpy(),
                                                      best_rot_B_C))
        print(" org_trans = {} \n pred_trans = {}".format(
            self.gt_trans_B_C.numpy(), best_trans_B_C))

        print("\n for G<-->A ")
        print("org_trans = {} \n pred_trans = {}".format(
            self.gt_trans_G_A.numpy(), best_trans_G_A))

        # plot the points for visualization
        if vis:
            trans_B_G_A = self.trans_B_G.numpy().reshape(-1, 3) + np.array([
                np.matmul(self.rot_B_G[i].numpy(),
                          best_trans_G_A.reshape(-1, 3).T).T
                for i in range(self.num_points)
            ]).reshape(-1, 3)
            trans_B_C_A = np.matmul(best_rot_B_C,
                                    self.trans_C_A.numpy().reshape(
                                        -1, 3).T).T + best_trans_B_C.reshape(
                                            -1, 3)
            ax = plt.axes(projection='3d')
            ax.scatter3D(trans_B_G_A[:, 0], trans_B_G_A[:, 1], trans_B_G_A[:,
                                                                           2])
            ax.scatter3D(trans_B_C_A[:, 0],
                         trans_B_C_A[:, 1],
                         trans_B_C_A[:, 2],
                         color='red')
            scatter1_proxy = matplotlib.lines.Line2D([0], [0],
                                                     linestyle="none",
                                                     marker='o')
            scatter2_proxy = matplotlib.lines.Line2D([0], [0],
                                                     linestyle="none",
                                                     c='red',
                                                     marker='o')
            ax.legend([scatter1_proxy, scatter2_proxy],
                      ['Base to Ar from Gripper', 'Base to Ar from Camera'],
                      numpoints=1)
            plt.show()