def main(device=torch.device('cuda:0')): # CLI arguments parser = arg.ArgumentParser( description='We all know what we are doing. Fighting!') parser.add_argument("--datasize", "-d", default="small", type=str, help="data size you want to use, small, medium, total") # Parsing args = parser.parse_args() # Data loaders datasize = args.datasize pathname = "data/nyu.zip" tr_loader, va_loader, te_loader = getTrainingValidationTestingData( datasize, pathname, batch_size=config("unet.batch_size")) # Model model = Net() # define loss function # criterion = torch.nn.L1Loss() # Attempts to restore the latest checkpoint if exists print("Loading unet...") model, start_epoch, stats = util.restore_checkpoint( model, util.config("unet.checkpoint")) acc, loss = util.evaluate_model(model, te_loader, device) # axes = util.make_training_plot() print(f'Test Accuracy:{acc}') print(f'Test Loss:{loss}')
def harden(): upgrade() autoupgrade() util.debian_install("fail2ban") print "attempting to configure key-based auth for root..." import os.path localKey = open(os.path.expanduser("~/.ssh/id_rsa.pub")).read() util.append(localKey,"~/.ssh/authorized_keys") print "WARNING: YOU *MUST* have root configured to continue. Type YES to confirm." confirm = None while confirm != "YES": confirm = raw_input() pass print "disabling password auth for root" util.config("PasswordAuthentication no","/etc/ssh/sshd_config") run("service ssh restart") setupDeployUser() logwatch() firewall() #this should be run last, since it can abort the SSH connection
def set_teamcity_installed(software,version=1): "Marks some software as being installed on the agent" if util.what_system() != util.DARWIN: raise Exception("Not implemented") run("sudo launchctl unload /Library/LaunchAgents/com.dca.teamcity-agent.plist") util.config("{SOFTWARE}={VERSION}".format(SOFTWARE=software,VERSION=version),"buildAgent/conf/buildAgent.properties") run("sudo launchctl load /Library/LaunchAgents/com.dca.teamcity-agent.plist")
def training_data(self): if self.dataset in Model.Xs: print("Using cached dataset:", self.dataset) return (Model.Xs[self.dataset], Model.Ys[self.dataset]) Model.Xs[self.dataset] = [] Model.Ys[self.dataset] = [] db_tweets_connection = db_tweets_connect( 'pericog', config('connections', config('connections', 'active'))) db_tweets_cursor = db_tweets_connection.cursor() print("Retrieving training dataset:", self.dataset) db_tweets_cursor.execute(""" SELECT text, {} FROM tweets LEFT JOIN tweet_properties ON id=tweet_id WHERE {}_train = True ORDER BY id DESC """.format(','.join(self.properties), self.dataset)) # TODO: make this work with multiple properties at once for text, label in db_tweets_cursor.fetchall(): if label is None: continue Model.Xs[self.dataset].append(text) Model.Ys[self.dataset].append(label) db_tweets_connection.close() return (Model.Xs[self.dataset], numpy.array(Model.Ys[self.dataset]).astype(numpy.bool))
def train(self, X, Y): X = [ TaggedDocument(tokens, [property]) for tokens, property in zip(X, Y) ] model = Doc2Vec( workers=config('pericog', 'thread_count'), dm=1, dbow_words=1, dm_mean=0, dm_concat=0, dm_tag_count=1, hs=1, negative=0, size=config('tokens2vec', 'vector_size'), alpha=0.025, window=8, min_count=0, sample=1e-4, iter=10, max_vocab_size=None, batch_words=1000000, min_alpha=0.0001, seed=1, ### no documentation ### # docvecs=None, # docvecs_mapfile='', # trim_rule=None, # comment=None, documents=X, ) model.save(self.path)
def harden(): upgrade() autoupgrade() util.debian_install("fail2ban") print "attempting to configure key-based auth for root..." import os.path localKey = open(os.path.expanduser("~/.ssh/id_rsa.pub")).read() util.append(localKey, "~/.ssh/authorized_keys") print "WARNING: YOU *MUST* have root configured to continue. Type YES to confirm." confirm = None while confirm != "YES": confirm = raw_input() pass print "disabling password auth for root" util.config("PasswordAuthentication no", "/etc/ssh/sshd_config") run("service ssh restart") setupDeployUser() logwatch() firewall() #this should be run last, since it can abort the SSH connection
def install_sonar_runner_objc(): "Install the sonar-runner command with support for analyzing objc projects" brew_install("sonar-runner") brew_install("xctool") install_oclint() util.pip_install("gcovr") version = run('sonar-runner -v | head -n 1 | tr -d "SonarQube Runner "') util.config("sonar_runner=%s" % version, "buildAgent/conf/buildAgent.properties")
def __init__( self, filepath, show_hidden=False, git=False ): self._filepath = filepath self._show_hidden = show_hidden self._git = git and util.config('use_git') self._excluded = util.config('ignore_ext').split(',') self._ignore_case = util.config('ignore_case') self._ignore_space = util.config('ignore_space') if self._git: self._load_git() self._load_file()
def __init__(self, filepath, show_hidden=False, git=False): self._filepath = filepath self._show_hidden = show_hidden self._git = git and util.config("use_git") self._excluded = util.config("ignore_ext").split(",") self._ignore_case = util.config("ignore_case") self._ignore_space = util.config("ignore_space") if self._git: self._load_git() self._load_file()
def __init__( self, filepath, show_hidden=False, git=False ): self._filepath = filepath self._show_hidden = show_hidden self._git = git and util.config('use_git') #self._excluded = util.config('ignore_ext').split(',') ignore_ext = util.config('ignore_ext') if len(ignore_ext.strip())==0: self._excluded = [] else: self._excluded = ignore_ext.split(',') self._ignore_case = util.config('ignore_case') self._ignore_space = util.config('ignore_space') if self._git: self._load_git() self._load_file()
def __init__(self): cpy.tools.buffet = BuffetTool(config("template_engine")) #set the output encoding self._cp_config["cpy.tools.encode.encoding"] = "utf-8" #make our stylesheet {divname: (top, left, size)} self.discs = {"top": (50, 650, 146), "topright": (230, 560, 146), "right": (345, 370, 146), "botright": (381, 140, 146), "botleft": (230, 0, 146), "left": (260, 25, 146), "topleft": (80, 75, 146)} styletemp = mako.template.Template(filename="templates/styles.mak") fout = file("static/styles.css", "w")\ .write(styletemp.render(discs=self.discs)) #load the admin page. We have to import Admin after the config has #loaded or else it borks from admin import Admin self.admin = Admin() from team import TeamAdmin self.team_admin = TeamAdmin() from cherryblossom import BlogRoot self.blog = BlogRoot('/blog')
def __init__(self): cfg = util.config() self.conn = sqlite3.connect(util.get_path(cfg["db"]["db_sqlite_file"])) logging.debug("Got connection to database") schema = open(util.get_path("db/db_schema.sql")).read() for statement in schema.split(";"): try: self.conn.execute(statement) except sqlite3.OperationalError as e: if statement.strip().startswith("--IGNORE_ERROR"): logging.info( "Ignoring error thrown by statement {}: {}".format( statement, e)) else: raise e self.conn.commit() logging.debug("Done!") if self.get_db_version() == "1": logging.info("Got db version of 1, migrating to version 2") if self.migrate_genre(): logging.info("It worked") self.set_db_version("2") else: logging.error("Failed to migrate genres")
def __init__(self): cpy.tools.buffet = BuffetTool(config("template_engine")) #set the output encoding self._cp_config["cpy.tools.encode.encoding"] = "utf-8" #make our stylesheet {divname: (top, left, size)} self.discs = { "top": (50, 650, 146), "topright": (230, 560, 146), "right": (345, 370, 146), "botright": (381, 140, 146), "botleft": (230, 0, 146), "left": (260, 25, 146), "topleft": (80, 75, 146) } styletemp = mako.template.Template(filename="templates/styles.mak") fout = file("static/styles.css", "w")\ .write(styletemp.render(discs=self.discs)) #load the admin page. We have to import Admin after the config has #loaded or else it borks from admin import Admin self.admin = Admin() from team import TeamAdmin self.team_admin = TeamAdmin() from cherryblossom import BlogRoot self.blog = BlogRoot('/blog')
def refresh_events(db: DbStore): config = util.config()["gen_events"] if not config["enable"]: logging.info("Skipping events as gen_events disbled") return logging.info("Refreshing events") last_event = db.latest_event() if last_event is not None: after = last_event["timestamp"] states = player_store.store().player_states_after_time_asc(after) logging.info("Processing events after {}({})".format(after, unix_to_iso(after))) initial_state = last_event else: logging.info("Processing all events (no existing events)") states = player_store.store().player_get_states_asc_timestamp() initial_state = {"state": {}} logging.info("Initial state for event gen: {}".format(initial_state.__str__())) logging.info("Num states to process = {}".format(len(states))) new_events = gen_events(initial_state, states) logging.info("Generated {} new events".format(len(new_events))) if len(new_events) > 0: for event in new_events: db.add_event(event) add_prev_track_id(db) logging.info("Deleting old states...") player_store.store().delete_states() logging.info("Done with gen_events")
def fix_cgroups(): """This works around the cgroup issue reported at http://blog.docker.io/2013/09/docker-can-now-run-within-docker/: It looks like the LXC tools cannot start nested containers if the devices control group is not in its own hierarchy. Check the content of /proc/1/cgroup: if devices is standing on a line on its own, you’re good. If you see that another control group is on the same line, Docker-in-Docker won’t work. The wrapper script will detect this situation and issue a warning. To work around the issue, you should stop all running containers, unmount all the control groups, and remount them one by one, each in its own hierarchy. """ run("umount /cgroup") cgroups = ["perf_event","blkio","net_cls","freezer","cpuacct","cpu","cpuset","devices"] with settings(warn_only=True): for group in cgroups: run("mkdir /cgroup/%s" % group) run("sed -i '\,none /cgroup cgroup defaults 0 0,d' /etc/fstab") for group in cgroups: util.config("{GROUP} /cgroup/{GROUP} cgroup rw,relatime,{GROUP},clone_children 0 0".format(GROUP=group),"/etc/fstab") print "you should probably powercycle after running this... mount -a doesn't seem to do the trick exactly"
def run_export(): if not config()["export"]["enable"]: logging.info("Export disabled, not running...") return logging.info("Enabled, running yoyoyo okokokok") os.chdir(get_path("upload")) prev_music = "" if os.path.exists("music.csv"): prev_music = open("music.csv", "r").read() db = DbStore() write_csv(db) if open("music.csv", "r").read() != prev_music: logging.info("music.csv changed so reuploading to github") # I know should use subprocess os.system("rm main.sqlite") os.system("cp ../main.sqlite main.sqlite") os.system('sqlite3 main.sqlite ".dump" > main.sql') os.system("git add main.sql music.csv") os.system("git commit -m \"Data upload at {}\"".format( datetime.datetime.now().isoformat())) os.system("git push -u origin master") else: logging.info("tracks.txt the same, no new music to upload")
def plot_confusion_matrix(self, dataset="training", normalize=True, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ cm = self.confusion_matrix(dataset) classes = config()["pitches"] if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show()
def main(): ARGS = args_parser.parse_args() print "job_dir: {}".format(ARGS.job_dir) config = util.config(ARGS.job_dir) estimator = model.estimator(config) train_spec = tf.estimator.TrainSpec( input.train_input_fn, max_steps=100 ) exporter = tf.estimator.FinalExporter( 'estimator', input.json_serving_function, as_text=False # change to true if you want to export the model as readable text ) eval_spec = tf.estimator.EvalSpec( input.eval_input_fn, exporters=[exporter], name='estimator-eval', steps=100 ) tf.estimator.train_and_evaluate( estimator, train_spec, eval_spec )
def get_word2vec(token): if token in self.vectors: return self.vectors[token] elif config('glove', 'generate_missing'): return numpy.random.rand(self.size) else: return numpy.zeros(self.size)
def get_cove(token_vectors, vector, size=300): if token in vectors: return vectors[token] elif config('word2vec', 'generate_missing'): return numpy.random.rand(size) else: return numpy.zeros(size)
def view(string, entities): response = requests.get(util.config("quoteData")) data = response.json() quoteNumber = 111 for item in entities: if item["entity"] == "quote" or item["entity"] == "id" or item[ "entity"] == "number": quoteNumber = item["utteranceText"].lower().strip() quote = data["quotes"][int(quoteNumber) - 1] if quote is None: return util.output( "end", "quote_doesnt_exist", util.translate("quote_doesnt_exist", {"ID": quoteNumber})) # TODO: quote side_text return util.output( "end", "quote", util.translate("quote", { "ID": quoteNumber, "author": quote["user"], "text": quote["text"] }))
def __init__(self, method_name) -> NoReturn: cfg = config(self._CFG_PATH) auth = tweepy.OAuthHandler(cfg["auth"]["consumer_key"], cfg["auth"]["consumer_secret"]) auth.set_access_token(cfg["auth"]["access_token"], cfg["auth"]["access_token_secret"]) self.client = tweepy.API(auth, wait_on_rate_limit=True) self.method: Callable = getattr(self.client, method_name)
def install_teamcitify(): util.install_python3() util.install_python3_pip() sudo("%s uninstall teamcitify" % util.PIP3) run("%s install https://github.com/drewcrawford/teamcitify/zipball/master" % util.PIP3) # figure out the teamcitify version version = None import re try: version = run("%s freeze" % util.PIP3) except SystemExit: pass if version: version = re.search("teamcitify==(.*)", version).group(1) util.config("teamcitify=%s" % version, "buildAgent/conf/buildAgent.properties")
def factory(self, model, dataset=None, properties='True', input_model=None): model = str(config(self.name, model)) Class = getattr(__import__(model, fromlist=[model]), model) return Class(dataset, properties, input_model, self.verbose)
def get_token2index_map(setting): if not force_gen and os.path.isfile("derived_data/" + setting_string(**setting) + "__token2index_map.json"): with open("derived_data/" + setting_string(**setting) + "__token2index_map.json") as f: return json.load(f) else: token_counts = get_token_counts(setting) min_count = 1 if config('min_token_count') is not None: min_count = config('min_token_count') frequent_tokens = map(lambda i: i[0], filter(lambda c: c[1] >= min_count, token_counts.items())) token2index_map = dict(zip(sorted(frequent_tokens), range(len(frequent_tokens)))) with open("derived_data/" + setting_string(**setting) + "__token2index_map.json", "w") as f: json.dump(token2index_map, f) return token2index_map
def __init__(self): self._builder = gtk.Builder() self._builder.add_from_file(os.path.join(os.path.dirname( __file__ ), "config.glade")) self._window = self._builder.get_object('configwindow') self._use_git = self._builder.get_object('use-git') self._ignore_ext = self._builder.get_object('ignore-ext') self._ignore_case = self._builder.get_object('ignore-case') self._ignore_space = self._builder.get_object('ignore-space') self._ignore_ext.set_text(util.config('ignore_ext')) self._use_git.set_active(util.config('use_git')) self._ignore_case.set_active(util.config('ignore_case')) self._ignore_space.set_active(util.config('ignore_space')) self._ignore_ext.connect('key-release-event', self.on_ignore_ext) self._use_git.connect('toggled', self.on_use_git) self._ignore_case.connect('toggled', self.on_ignore_case) self._ignore_space.connect('toggled', self.on_ignore_space) self._builder.get_object('done').connect('clicked', self.on_click) self._window.show_all()
def __init__(self): self._builder = gtk.Builder() self._builder.add_from_file( os.path.join(os.path.dirname(__file__), "config.glade")) self._window = self._builder.get_object('configwindow') self._use_git = self._builder.get_object('use-git') self._ignore_ext = self._builder.get_object('ignore-ext') self._ignore_case = self._builder.get_object('ignore-case') self._ignore_space = self._builder.get_object('ignore-space') self._ignore_ext.set_text(util.config('ignore_ext')) self._use_git.set_active(util.config('use_git')) self._ignore_case.set_active(util.config('ignore_case')) self._ignore_space.set_active(util.config('ignore_space')) self._ignore_ext.connect('key-release-event', self.on_ignore_ext) self._use_git.connect('toggled', self.on_use_git) self._ignore_case.connect('toggled', self.on_ignore_case) self._ignore_space.connect('toggled', self.on_ignore_space) self._builder.get_object('done').connect('clicked', self.on_click) self._window.show_all()
def main(device=torch.device('cuda:0')): """Print performance metrics for model at specified epoch.""" # Data loaders pathname = "data/nyu.zip" tr_loader, va_loader, te_loader = getTrainingValidationTestingData(pathname, batch_size=util.config("unet.batch_size")) # Model model = Net() # define loss function # criterion = torch.nn.L1Loss() # Attempts to restore the latest checkpoint if exists print("Loading unet...") model, start_epoch, stats = util.restore_checkpoint(model, util.config("unet.checkpoint")) acc, loss = util.evaluate_model(model, te_loader, device) # axes = util.make_training_plot() print(f'Test Accuracy:{acc}') print(f'Test Loss:{loss}')
def connect(): """ Connect to the PosgreSQL database server """ # connection variable conn = None fetched_df = pd.DataFrame() try: print("Connecting to the PostgreSQL database...") params = config() # read connection parameters conn = psycopg2.connect(**params) # connect to the PostgreSQL server cur = conn.cursor() # create a cursor # execute a statement print('PostgreSQL database version: ') cur.execute('SELECT version();') # display the PostgreSQL database version db_version = cur.fetchone() print(db_version) print("type(fetchone) : ", type(db_version)) # fetch some more stuff print("SELECT * FROM application;\n") cur.execute("SELECT * FROM application LIMIT 20;") # display the results competition = cur.fetchall() for row in competition: print(row) # Extract columns and convert to df: columns = [desc[0] for desc in cur.description] fetched_df = pd.DataFrame(competition, columns=columns) if len(fetched_df) == 0: print("EMPTY!") print("type(fetchall) : ", type(competition)) print("\nOutput query: \n", fetched_df) # close the communication with the PostgreSQL cur.close() except (Exception, psycopg2.DatabaseError) as error: print(error) finally: # verify connection is not empty if conn is not None: conn.close() print("\n Database connection closed. ") return fetched_df
def enrich_ids_with_authors(setting): f = open("derived_data/" + setting_string(**setting) + "__ids") f2 = open("derived_data/" + setting_string(**setting) + "__ids_with_authors", "w") findAuthorStmt = "SELECT display_name, zbmath_id FROM authorship WHERE document=%(document)s AND rank<=%(maxrank)s" max_author_rank = 2 if config("max_author_rank") is not None: max_author_rank = config("max_author_rank") for line in f: x = line.split(";") ids = {} if setting['granularity'] == 'paragraphs': ids['doc'] = x[0].strip() ids['par'] = x[1].strip() elif setting['granularity'] == 'documents': ids['doc'] = x[0].strip() else: raise ValueError("granularity must be either 'paragraphs' or 'documents'") authors = [] cursor().execute(findAuthorStmt, {"document": ids['doc'], "maxrank": max_author_rank}) for row in cursor(): display_name = row[0] zbmath_id = row[1] authors.append((display_name, zbmath_id)) if setting['granularity'] == 'paragraphs': newline = ids['doc'] + ";" + ids['par'] + ";" + ";".join(map(lambda author: author[0] + "(" + str(author[1]) + ")", authors)) + (";" * (max_author_rank-len(authors))) elif setting['granularity'] == 'documents': newline = ids['doc'] + ";" + ";".join(map(lambda author: author[0] + "(" + str(author[1]) + ")", authors)) + (";" * (max_author_rank-len(authors))) else: raise ValueError("granularity must be either 'paragraphs' or 'documents'") f2.write(newline + "\n") f.close() f2.close()
def validate(self): validation = {} for instrument in config()["instruments"]: X = self.validation_input_data(instrument).values Y = self.validation_output_data().values scores = self.model().evaluate(X, Y) for i in range(1, len(self._model.metrics_names)): print("\nResults validating with training data: %s: %.2f%%" % (self._model.metrics_names[i], scores[i] * 100)) print(self._model.metrics_names) validation[instrument] = (self._model.metrics_names, scores) return validation
def delay(self, response): """Based on the throtteling information of the response, execute a delay before fetching additional data. Args: response (HTTP Response): Result of a GraphQL request to Shopify """ max_cost_points = int(config()["general"]["max_cost_points"]) leak_rate = int(config()["general"]["leak_rate"]) try: cost = loads(response.text)['extensions']['cost'] remaining_cost = cost['throttleStatus']['currentlyAvailable'] actual_query_cost = cost['actualQueryCost'] except KeyError as e: self.log.error('Can`t extract query cost from JSON response:\n{}, error: {}'\ .format(response.text, e)) if remaining_cost < actual_query_cost: time_to_sleep = ceil( (max_cost_points - remaining_cost) / leak_rate) self.log.info('Delaying next API request for {} seconds to avoid blocking'\ .format(time_to_sleep)) sleep(time_to_sleep)
def split_song(self): trainer = Trainer() trainer.load() longFileProfiler = LongFileProfiler(self.song_file) profiles = longFileProfiler.get_profile() chords = [] for profile in profiles: X = np.array([profile]) prediction = trainer.model().predict(X) chord_index = np.argmax(prediction) chords.append(config()["pitches"][chord_index]) return chords
def view_random(string, entities): response = requests.get(util.config("quoteData")) data = response.json() quoteExists = False while not quoteExists: quoteNumber = randint(0, len(data["quotes"])) quoteExists = data["quotes"][quoteNumber] quote = data["quotes"][quoteNumber] return util.output( "end", "quote", util.translate("quote", { "ID": quoteNumber, "author": quote["user"], "text": quote["text"] }))
def train(self, X, Y): random_forest = RandomForestClassifier( n_jobs=config('pericog', 'thread_count'), n_estimators=100, # number of trees criterion='gini', # 'gini' or 'entropy' verbose=1, max_features= 'sqrt', # 'sqrt', 'log2', or a percentage of the total features for each forest to consider class_weight=None, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, random_state=None, warm_start=False, ) random_forest.fit(X, Y) joblib.dump(random_forest, self.path)
def create(string, entities): content = None if ("reply" in util.getQuery()["extra"]): content = util.getQuery()["extra"]["reply"]["content"] if not content: return util.output("end", "empty_paste", util.translate("empty_paste")) query = {"apikey": util.config("apikey")} payload = { "text": content, "title": "Automatic Upload", "name": "Guinevere" } request = requests.post("https://paste.gemwire.uk/api/create", params=query, data=payload) url = request.text.strip() return util.output("end", "paste_made", util.translate("paste_made", {"paste": url}))
def view_all(string, entities): query = {"apikey": util.config("apikey")} response = requests.get("https://paste.gemwire.uk/api/recent", params=query) list = response.json() result = "" for element in list: result += util.translate( "paste_list_element", { "id": element["pid"], "title": element["title"], "user": element["name"] }) return util.output( "end", "paste_list", util.translate("paste_list", { "count": len(list), "result": result }))
def __init__(self): cfg = util.config() self.conn = sqlite3.connect( util.get_path(cfg["db"]["player_sqlite_file"])) self.conn.execute(""" create table if not exists player ( timestamp int, api_timestamp real, track_id text, progress_ms int, duration_ms int, is_playing int, repeat int, shuffle_state int, device_id text, device_active int, volume_percent int, is_private_session int, device_type text, device_name text ); """) self.conn.commit()
print('train sensitivity:', sensitivity(y_train, train_predict), 'train specifity:', specificity(y_train, train_predict)) print('test sensitivity:', sensitivity(y_test, test_predict), 'test specifity:', specificity(y_test, test_predict)) print('f1_score:', F1(y_test, test_predict)) print('acc:', accuracy_score(y_test, test_predict)) roc_auc = function_lpp_new.draw_roc(y_test, test_predict_proba) print('roc:', roc_auc) print('over') if __name__ == '__main__': params = util.config() combine = list(zip(params['ecg_path_all'], params['pcg_path_all'])) combine_index = 0 for lll, j in enumerate(combine): params['ecg_path'] = j[0] params['pcg_path'] = j[1] scaler = MinMaxScaler() save_true = [] save_predict = [] y_predict_label = [] result_eva = [] tmp = [ 'sensitivity:', 'specificity:', 'precision', 'f1-score:',
) result.close() def clean_mysql(con): """Remove SystemEvents matching regexps in trigger table""" total = 0 for id, from_host, sys_log_tag, message in triggers(con): num_of_rows = clean_system_events(from_host, sys_log_tag, message) update_trigger_with_delete_stats(id, num_of_rows) total += num_of_rows logger('Deleted %s SystemEvents matched by triggers.' % total) # # Main # if __name__ == "__main__": only_allow_one_instance('signer_trigger_clean.pid') cnf = config('signer.cfg', os.path.dirname(os.path.abspath(__file__))) engine = create_engine( cnf.DATABASE, convert_unicode=True, pool_size=50, pool_recycle=3600 ) con = engine.connect() clean_mysql(con) con.close()
def __init__(self): self.conf = config(self) self.conn = None
def on_ignore_ext(self, widget, event): util.config('ignore_ext', self._ignore_ext.get_text())
def on_use_git(self, widget): util.config('use_git', self._use_git.get_active())
def on_ignore_case(self, widget): util.config('ignore_case', self._ignore_case.get_active())
def on_ignore_space(self, widget): util.config('ignore_space', self._ignore_space.get_active())