예제 #1
0
def train_model(model, train_iterator, val_iterator, optimizer, scheduler,
                criterion, n_epochs, clip, model_path):
    '''
    开始训练我们的模型:
    1.每一次epoch,都会检查模型是否达到的最佳的validation loss,如果达到了,就更新
    最好的validation loss以及保存模型参数
    2.打印每个epoch的loss以及困惑度。
    '''
    best_valid_loss = float('inf')
    for epoch in range(n_epochs):
        start_time = time.time()
        train_loss = train(model, train_iterator, optimizer, criterion, clip)
        valid_loss = evaluate(model, val_iterator, criterion)
        end_time = time.time()
        epoch_mins, epoch_secs = epoch_time(start_time, end_time)

        if valid_loss < best_valid_loss:
            best_valid_loss = valid_loss
            torch.save(model.state_dict(), model_path)
        scheduler.step()
        print('epoch:{},time-mins:{},time-secs:{}'.format(
            epoch + 1, epoch_mins, epoch_secs))
        print('train loss:{},train perplexity:{}'.format(
            train_loss, math.exp(train_loss)))
        print('val loss:{}, val perplexity:{}'.format(valid_loss,
                                                      math.exp(valid_loss)))
예제 #2
0
    def time_updated(self):
        """
        Should be called once the system time is set correctly (ex. from NTP
        or a browser client).
        Updates the metadata now that we know the real time of the data we've been
        collecting.
        """
        self.start_time_offset = epoch_time() * 1000 - time.ticks_ms()
        for log in self.our_logs_without_start_time:
            log["start_time_offset"] = self.start_time_offset
        self.our_logs_without_start_time = []

        with open(self.meta_file, "r") as f:
            with open(self.tmp_meta, "w") as f2:
                # print("time_updated():")
                for line in f.readlines():
                    # print("<%s>" % line.strip())
                    index, active, start_time, start_time_offset = line.strip().split(",")
                    if start_time_offset == "None":
                        start_time_offset = str(self.start_time_offset)


                    line2 = ",".join([index, active, start_time, start_time_offset])
                    # print("[%s]" % line2)
                    f2.write(line2)
                    f2.write("\n")

        os.rename(self.tmp_meta, self.meta_file)
예제 #3
0
    def collect(self):
        time_start = datetime.utcnow()
        collected_data = self.collect_fn()
        time_end = datetime.utcnow()

        data = {
            'nick': self.nick,
            'time_start': epoch_time(time_start),
            'time_end': epoch_time(time_end),
            'time_start_pretty': format_time(time_start),
            'time_end_pretty': format_time(time_end),
            'data': collected_data
        }

        log('%s: Collected the following data: %s' % (self.name, json.dumps(data, indent=2)), self.verbose)

        self.upload_queue.append(data)
        self.upload()
SAVE_DIR = 'models'
MODEL_SAVE_PATH = os.path.join(SAVE_DIR, 'transformer-seq2seq.pt')

best_valid_loss = float('inf')

if not os.path.isdir(f'{SAVE_DIR}'):
    os.makedirs(f'{SAVE_DIR}')
    
train_total = []
valid_total = []
test_total = []

for epoch in range(N_EPOCHS):
    
    start_time = time.time()
    
    train_loss = trainer(model, train_iter, optimizer, criterion, CLIP)
    valid_loss = evaluate(model, val_iter, criterion)
    
    train_total.append(train_loss)
    valid_total.append(valid_loss)
    
    end_time = time.time()
    
    epoch_mins, epoch_secs = epoch_time(start_time, end_time)
    
    if valid_loss < best_valid_loss:
        best_valid_loss = valid_loss
        torch.save(model.state_dict(), MODEL_SAVE_PATH)
    
    print(f'| Epoch: {epoch+1:03} | Time: {epoch_mins}m {epoch_secs}s| Train Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f} | Val. Loss: {valid_loss:.3f} | Val. PPL: {math.exp(valid_loss):7.3f} |')
예제 #5
0
    print(model.embedding.weight.data)

    print('Just started:')
    valid_loss, valid_acc = util.evaluate(model, valid_iterator, criterion,
                                          labelName)
    print(f'\t Val. Loss: {valid_loss:.3e} |  Val. Acc: {valid_acc*100:.2e}%')
    for epoch in range(N_EPOCHS):
        start_time = time.time()

        train_loss, train_acc = util.train(model, train_iterator, optimizer,
                                           criterion, labelName)
        valid_loss, valid_acc = util.evaluate(model, valid_iterator, criterion,
                                              labelName)

        end_time = time.time()
        epoch_mins, epoch_secs = util.epoch_time(start_time, end_time)

        if valid_loss < best_valid_loss:
            best_valid_loss = valid_loss
            torch.save(model.state_dict(), modelName)

        print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
        print(
            f'\tTrain Loss: {train_loss:.3e} | Train Acc: {train_acc*100:.2e}%'
        )
        print(
            f'\t Val. Loss: {valid_loss:.3e} |  Val. Acc: {valid_acc*100:.2e}%'
        )
    model.load_state_dict(torch.load(modelName))
    test_loss, test_acc = util.evaluate(model, test_iterator, criterion,
                                        labelName)
예제 #6
0
파일: main.py 프로젝트: camlee/power-meter
            disp.fill_rect(0, 20, 128, 128, 0)
            disp.text(
                "In:  %.2fA %.0fW" %
                (sense.get_current("in") or 0, sense.get_power("in") or 0), 0,
                22)
            disp.text(
                "Out: %.2fA %.0fW" %
                (sense.get_current("out") or 0, sense.get_power("out") or 0),
                0, 32)
            disp.text(
                "%02d:%02d:%02d UTC %3s" % (time.localtime()[3:6] +
                                            (len(open_web_sockets), )), 0, 55)
            disp.show()

            ws_text = ",".join([
                str(epoch_time() * 1000),
                str(sense.get_power("in")),
                str(sense.get_power("out")),
                str(sense.get_voltage("in")),
                str(sense.get_voltage("out")),
                str(sense.get_current("in")),
                str(sense.get_current("out")),
                str(sense.get_available_power("in")),
            ])
            # print(ws_text)
            for ws in open_web_sockets:
                start_time = time.ticks_ms()
                ws.SendText(ws_text)

            gc.collect()