예제 #1
0
def evaluationFunction(currentGameState):

    newPos = currentGameState.getPacmanPosition()
    newFood = currentGameState.getFood()
    newGhostStates = currentGameState.getGhostStates()
    newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]
    """Calculate distance to the nearest food"""
    newFoodList = np.array(newFood.asList())
    distanceToFood = [
        util.euclideanDistance(newPos, food) for food in newFoodList
    ]
    min_food_distance = 0
    if len(newFoodList) > 0:
        min_food_distance = distanceToFood[np.argmin(distanceToFood)]
    """Calculate the distance to nearest ghost"""
    ghostPositions = np.array(currentGameState.getGhostPositions())
    if len(ghostPositions) > 0:
        distanceToGhost = [
            util.manhattanDistance(newPos, ghost) for ghost in ghostPositions
        ]
        min_ghost_distance = distanceToGhost[np.argmin(distanceToGhost)]
        nearestGhostScaredTime = newScaredTimes[np.argmin(distanceToGhost)]
        # avoid certain death
        if min_ghost_distance <= 1 and nearestGhostScaredTime == 0:
            return -999999
        # eat a scared ghost
        if min_ghost_distance <= 1 and nearestGhostScaredTime > 0:
            return 999999

    return currentGameState.getScore() * 5 - min_food_distance
예제 #2
0
파일: pacman.py 프로젝트: gilovi/AiUi-1
    def checkDeath(state, agentIndex):
        toJump = [False] * 5
        otherAgentIndex = state.getPacmanPosition()
        for index1 in range(1, len(state.data.agentStates)):
            for index2 in range(1, len(state.data.agentStates)):
                if index1 == index2:
                    continue
                ghost1State = state.data.agentStates[index1]
                ghost2State = state.data.agentStates[index2]
                ghost1Position = ghost1State.configuration.getPosition()
                ghost2Position = ghost2State.configuration.getPosition()
                if util.euclideanDistance(ghost1Position, ghost2Position) < COLLISION_TOLERANCE:
                    toJump[index1 - 1] = True
                    toJump[index2 - 1] = True
                    # @@#@@
        for index in range(1, len(toJump) + 1):
            if toJump[index - 1]:
                ghostState = state.data.agentStates[index]
                GhostRules.placeGhost(state, ghostState)

        pacmanPosition = state.getPacmanPosition()
        if agentIndex == 0:  # Pacman just moved; Anyone can kill him
            for index in range(1, len(state.data.agentStates)):
                ghostState = state.data.agentStates[index]
                ghostPosition = ghostState.configuration.getPosition()
                if GhostRules.canKill(pacmanPosition, ghostPosition):
                    GhostRules.collide(state, ghostState, index)
        else:
            ghostState = state.data.agentStates[agentIndex]
            ghostPosition = ghostState.configuration.getPosition()
            if GhostRules.canKill(pacmanPosition, ghostPosition):
                GhostRules.collide(state, ghostState, agentIndex)
예제 #3
0
파일: pacman.py 프로젝트: gilovi/AiUi-1
    def checkDeath(state, agentIndex):
        toJump = [False] * 5
        otherAgentIndex = state.getPacmanPosition()
        for index1 in range(1, len(state.data.agentStates)):
            for index2 in range(1, len(state.data.agentStates)):
                if index1 == index2: continue
                ghost1State = state.data.agentStates[index1]
                ghost2State = state.data.agentStates[index2]
                ghost1Position = ghost1State.configuration.getPosition()
                ghost2Position = ghost2State.configuration.getPosition()
                if util.euclideanDistance(
                        ghost1Position, ghost2Position) < COLLISION_TOLERANCE:
                    toJump[index1 - 1] = True
                    toJump[index2 - 1] = True
                    #@@#@@
        for index in range(1, len(toJump) + 1):
            if toJump[index - 1]:
                ghostState = state.data.agentStates[index]
                GhostRules.placeGhost(state, ghostState)

        pacmanPosition = state.getPacmanPosition()
        if agentIndex == 0:  # Pacman just moved; Anyone can kill him
            for index in range(1, len(state.data.agentStates)):
                ghostState = state.data.agentStates[index]
                ghostPosition = ghostState.configuration.getPosition()
                if GhostRules.canKill(pacmanPosition, ghostPosition):
                    GhostRules.collide(state, ghostState, index)
        else:
            ghostState = state.data.agentStates[agentIndex]
            ghostPosition = ghostState.configuration.getPosition()
            if GhostRules.canKill(pacmanPosition, ghostPosition):
                GhostRules.collide(state, ghostState, agentIndex)
예제 #4
0
def classifyPts(eps, minPts):
    corePts = set()
    noisePts = set()
    neighborhood = dict()
    for i in range(size):
        temp = list()
        for j in range(size):
            distant = util.euclideanDistance(xCoord[i], yCoord[i], xCoord[j],
                                             yCoord[j])
            if distant <= eps:
                temp.append(j)
        neighborhood[i] = temp

    for pt, neighbors in neighborhood.items():
        if len(neighbors) >= minPts:
            corePts.add(pt)
    for pt, neighbors in neighborhood.items():
        if pt not in corePts:
            isBorderPt = False
            for neighbor in neighbors:
                if neighbor in corePts:
                    isBorderPt = True
                    break
            if not isBorderPt:
                noisePts.add(pt)
    return corePts, noisePts, neighborhood
예제 #5
0
def getClusters(means, k):
    while True:
        tempMean = copy.deepcopy(means)
        cluster = list()
        for i in range(k):
            cluster.append(list())
        for i in range(size):
            closestD = float('inf')
            suitableCusterId = -1
            for j in range(k):
                distant = util.euclideanDistance(xCoord[i], yCoord[i],
                                                 means[j][0], means[j][1])
                if distant < closestD:
                    closestD = distant
                    suitableCusterId = j
            cluster[suitableCusterId].append(i)
        for i in range(k):
            means[i][0] = 0
            means[i][1] = 0
            for j in cluster[i]:
                means[i][0] += xCoord[j]
                means[i][1] += yCoord[j]
            clusterSize = len(cluster[i])
            means[i][0] /= clusterSize
            means[i][1] /= clusterSize
        if means == tempMean:
            return cluster
예제 #6
0
class Cluster:
    def __init__(self):
        """
        self.clusters will be a dictionary where self.clusters[coordinate] = cluster
        :param k: k clusters
        :param addresses: list of addresses to parse, for now just lat/lon coordinates
        """
        ## self.clusters[cluster] = list of coordinates
        self.clusters = {}
        ## self.centroids[cluster] = centroid
        self.centroids = {}

    def euclideanDistance(self, (x1, y1), (x2, y2)):
        return util.euclideanDistance((x1, y1), (x2, y2))
예제 #7
0
def cornersHeuristic(state, problem):
    """
    Q2.2
    A heuristic for the CornersProblem that you defined.

      state:   The current search state
               (a data structure you chose in your search problem)

      problem: The CornersProblem instance for this layout.

    This function should always return a number that is a lower bound on the
    shortest path from the state to a goal of the problem; i.e.  it should be
    admissible (as well as consistent).
    """
    corners = problem.corners  # These are the corner coordinates
    # These are the walls of the maze, as a Grid (game.py)
    walls = problem.walls

    "*** YOUR CODE HERE ***"
    "*** we will use euclidean distance as a heuristic for this problem ***"

    # initialize current node with starting position
    currentNode = state[0]

    # list of min distances for all univisted corners
    minDistances = []

    # list of unvisited corners
    unvisitedNodes = [corner for corner in corners if corner not in state[1]]

    while unvisitedNodes:
        dists = []

        # append both node and its corresponding minimum distance
        for node in unvisitedNodes:
            dists.append((util.euclideanDistance(currentNode, node), node))

        minDist = min(dists)
        minDistances.append(minDist[0])

        # move on to the next corner which gave the min distance
        currentNode = minDist[1]

        # we don't want to re-explore the nodes
        unvisitedNodes.pop(unvisitedNodes.index(minDist[1]))

    return sum(minDistances)
예제 #8
0
    def findNeighbors(self, training, point, k):
        """
        calculates the neighbor points
        """
        dim = len(training[0]) - 1

        distance = []
        neighbor = []

        for i in range(0, len(training)):
            x = euclideanDistance(training[i][1:], point[1:], dim)
            distance.append((training[i][0], x))

        distance = sorted(distance, key=lambda tup: tup[1])

        for i in range(0, k):
            neighbor.append(distance[i])

        return neighbor
예제 #9
0

def allCustomersConsidered(customerServed):
    for val in customerServed.values():
        if val == False:
            return False
    return True
        


# refer link - http://ieeexplore.ieee.org/document/7784340/?reload=true
#Step 1
distanceDict = dict()
for i in range(pointsLen):
    for j in range(i+1,pointsLen):
        distanceDict[(customerPositions[i], customerPositions[j])] = util.euclideanDistance(customerPositions[i], customerPositions[j])

#Step 2
for i in range(pointsLen):
    for j in range(i+1,pointsLen):
        savings[(customerPositions[i], customerPositions[j])] = computeSaving(depot,customerPositions[i], customerPositions[j])
savings = sorted(savings.items(),key=operator.itemgetter(1),reverse=True)
l = len(savings)
cust_pairs = list()
for i in range(l):
    cust_pairs.append(savings[i][0])

#initially none of the customers have been isServed
customerServed = dict()
for c in customerPositions:
    customerServed[c] = False
예제 #10
0
 def isGoalState(self, state):
     return util.euclideanDistance(state, self.goal) < 0.9
예제 #11
0
파일: pacman.py 프로젝트: gilovi/AiUi-1
 def canKill(pacmanPosition, ghostPosition):
     return util.euclideanDistance(ghostPosition, pacmanPosition) <= COLLISION_TOLERANCE
예제 #12
0
파일: pacman.py 프로젝트: gilovi/AiUi-1
 def canKill(pacmanPosition, ghostPosition):
     return util.euclideanDistance(ghostPosition,
                                   pacmanPosition) <= COLLISION_TOLERANCE
예제 #13
0
def euclideanDistanceHeuristic(state, problem):
    """
    Returns the Euclidean distance from current state's position to goal
    """
    return util.euclideanDistance(state, problem.goal)
예제 #14
0
 def isGoalState(self, state):
    return util.euclideanDistance(state, self.goal ) < 0.9
예제 #15
0
def foodHeuristic(state, problem):
    """
    Your heuristic for the FoodSearchProblem goes here.

    This heuristic must be consistent to ensure correctness.  First, try to come
    up with an admissible heuristic; almost all admissible heuristics will be
    consistent as well.

    If using A* ever finds a solution that is worse uniform cost search finds,
    your heuristic is *not* consistent, and probably not admissible!  On the
    other hand, inadmissible or inconsistent heuristics may find optimal
    solutions, so be careful.

    The state is a tuple ( pacmanPosition, foodGrid ) where foodGrid is a Grid
    (see game.py) of either True or False. You can call foodGrid.asList() to get
    a list of food coordinates instead.

    If you want access to info like walls, capsules, etc., you can query the
    problem.  For example, problem.walls gives you a Grid of where the walls
    are.

    If you want to *store* information to be reused in other calls to the
    heuristic, there is a dictionary called problem.heuristicInfo that you can
    use. For example, if you only want to count the walls once and store that
    value, try: problem.heuristicInfo['wallCount'] = problem.walls.count()
    Subsequent calls to this heuristic can access
    problem.heuristicInfo['wallCount']
    """
    location, foodGrid = state
    # print "position", location, "Foods:", foodGrid.asList()

    from util import PriorityQueue
    from util import euclideanDistance
    from util import manhattanDistance
    foodList = foodGrid.asList()  # These are the corner coordinates
    walls = problem.walls  # These are the walls of the maze, as a Grid (game.py)

    points = ()
    for food in foodList:
        points = points + (food, )

    edgeList = []

    if (location not in points):
        # print "add location"
        points = points + (location, )

    if len(points) == 1:
        if points[0] != location:
            points = points + (location, )
        else:
            return 0  #no food left to find

    if (len(points) == 0):
        return 0

    edges = PriorityQueue()
    count = 0
    for pointA in points:
        for pointB in points:

            if pointA != pointB:

                if (pointA, pointB) not in edgeList:
                    edges.push(
                        (pointA, pointB, euclideanDistance(pointA, pointB)),
                        euclideanDistance(pointA, pointB))
                    count += 1
                    edgeList.append((pointA, pointB))
                    edgeList.append((pointB, pointA))

    if len(edgeList) == 0:
        return 0

    edgeCount = 0
    totalDistance = 0
    # construct tree
    visited = []
    #visited.append()
    while (edgeCount != (len(points) - 1)):
        start, end, distance = edges.pop()
        # print "start", start, "end", end
        cycle = False
        added = False
        for group in visited:
            #print "group:", group
            if end in group and start in group:
                cycle = True
            if start in group:
                if end not in group:
                    group.append(end)
                    added = True
            if end in group:
                if start not in group:
                    group.append(start)
                    added = True
        if (added == False and cycle == False):  # create new group
            visited.append([start, end])
            added = True
        if (added and cycle == False):
            #print "add edge", start, end, distance
            edgeCount += 1
            totalDistance += distance

    return totalDistance
예제 #16
0
def cornersHeuristic(state, problem):
    """
    A heuristic for the CornersProblem that you defined.

      state:   The current search state
               (a data structure you chose in your search problem)

      problem: The CornersProblem instance for this layout.

    This function should always return a number that is a lower bound on the
    shortest path from the state to a goal of the problem; i.e.  it should be
    admissible (as well as consistent).
    """
    from util import manhattanDistance
    from util import PriorityQueue
    from util import euclideanDistance
    corners = problem.corners  # These are the corner coordinates
    walls = problem.walls  # These are the walls of the maze, as a Grid (game.py)
    cornersVisited = state[1]

    points = ()
    for corner in corners:
        if corner not in cornersVisited:  #find remaining corners
            points = points + (corner, )

    location = state[0]
    edgeList = []

    if (location not in points):
        #print "add location"
        points = points + (location, )

    if len(points) == 1:
        if points[0] != location:
            points = points + (location, )
        else:
            #print "returned 0, points was 1"
            return 0

    if (len(points) == 0):
        #print "returned 0"
        return 0

    edges = PriorityQueue()
    count = 0
    for pointA in points:
        for pointB in points:

            if pointA != pointB:

                if (pointA, pointB) not in edgeList:
                    edges.push(
                        (pointA, pointB, euclideanDistance(pointA, pointB)),
                        euclideanDistance(pointA, pointB))

                    count += 1
                    edgeList.append((pointA, pointB))
                    edgeList.append((pointB, pointA))

    if len(edgeList) == 0:
        return 0

    edgeCount = 0
    totalDistance = 0
    # construct tree
    visited = []
    visited.append(())
    while (edgeCount != (len(points) - 1)):
        start, end, distance = edges.pop()
        cycle = False
        added = False
        for group in visited:
            if end in group and start in group:
                cycle = True
            if start in group:
                if end not in group:
                    group = group + (end, )
                    added = True
            if end in group:
                if start not in group:
                    group = group + (start, )
                    added = True
        if (added == False and cycle == False):  #create new group
            visited.append((start, end))
            added = True
        if (added):
            edgeCount += 1
            totalDistance += distance
    return totalDistance