예제 #1
0
def test_post_collected_tweets(mock_get, test_status):
    """Verify post_collected_tweets method returns None

    Notes:
       * Mock PostUpdate without making real call to Twitter API
    """
    expected_num_of_ids = 4
    status_id_file = Path(__file__).parent.joinpath(
        "../conf/list_of_status_ids_replied_to.txt"
    )

    list_of_status_ids_replied_to = list(file_reader(status_id_file))
    assert len(list_of_status_ids_replied_to) == expected_num_of_ids, (
        f"Expected number ({expected_num_of_ids}) of status ids replied to "
        f"did not match actual ({len(list_of_status_ids_replied_to)})"
    )
    quoted_tweet = test_status("post_reply_response")
    mock_get.return_value = quoted_tweet
    response = post_collected_tweets(quoted_tweets=[Tweet(quoted_tweet)])
    new_list_of_status_ids_replied_to = list(file_reader(status_id_file))
    assert (
        str(quoted_tweet.in_reply_to_status_id) == new_list_of_status_ids_replied_to[-1]
    ), "Expected status id to be last item in list"
    assert response
    # clean up by overwriting file with original list
    with status_id_file.open(mode="w") as f:
        for line in list_of_status_ids_replied_to:
            f.write(line + "\n")
예제 #2
0
def main():
    if len(sys.argv) == 3:
        paths = [sys.argv[1], sys.argv[2]]
    else:
        print('please give point cloud file and vehicle trajectory')
        return
    plat, plon, palt, pit = np.array(file_reader(paths[0])).T
    trajlat, trajlon, trajalt, trajit = np.array(file_reader(paths[1])).T
    trajectory = np.array([[trajlat[0], trajlon[0]],
                           [trajlat[-1], trajlon[-1]]])
    traj_direction = trajectory[1] - trajectory[0]

    new_road_points = road_surface_detection(plat, plon, palt, pit, trajectory)
    scan_line = scan_line_generator(new_road_points, trajectory)
    scan_line = boundary_selection(scan_line)
    intensity = intensity_selection(scan_line)
    refine_list = lane_marking_refinement(intensity, traj_direction)
    line_cluster = lane_marking_selection(refine_list, traj_direction)
    ls = lane_marking_generation(line_cluster)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(plat, plon, ',')
    for l in ls:
        ax.plot(l[0], l[1], color='black', linestyle='-')
    plt.savefig('result.png')
    plt.show()
예제 #3
0
def main():
    # prepare data
    print("Split ratio should be a decimal value between 0 and 1")
    split = float(
        input("Enter split ratio for  the training and testing set : "))
    print("enter a positive odd integer value for K nearest neighbour : ")
    k = int(input("define K for the evaluation : "))
    training_set, test_set = util.file_reader(split)

    print('Train set: ' + repr(len(training_set)))
    print('Test set: ' + repr(len(test_set)))
    # generate predictions
    predictions = []
    for x in range(len(test_set)):
        neighbors = get_neighbours(training_set, test_set[x], k)
        result = get_response(neighbors)
        predictions.append(result)
        # print('> predicted=' + repr(result) + ', actual=' + repr(test_set[x][-1]))
    accuracy = get_accuracy(test_set, predictions)
    print('Accuracy: ' + repr(accuracy) + '%')
예제 #4
0

def robin_karp(str, substr, d, q):
    n = len(str)
    m = len(substr)
    h = pow(d, m - 1) % q
    substr_hash = 0
    str_hash = 0
    for s in range(m):
        substr_hash = (d * substr_hash + ord(substr[s])) % q
        str_hash = (d * str_hash + ord(str[s])) % q
    for i in range(n - m + 1):
        if substr_hash == str_hash:
            match = True
            for j in range(m):
                if substr[j] != str[i + j]:
                    match = False
                    break
            if match:
                return i
        if i < n - m:
            str_hash = (d * (str_hash - ord(str[i]) * h) + ord(str[i + m])) % q
            if str_hash < 0:
                str_hash = str_hash + q
    return -1


if __name__ == '__main__':
    content = file_reader("data.txt")
    print(robin_karp(content, 'А табаку-то вчера дал? То-то, брат. Ну, на, Бог с тобой', 256, 101))
예제 #5
0
    accuracy = 0
    output_length = len(output)
    for i in range(output_length):
        k = 0
        for j in range(len(output[i])):
            if results[i][j] == output[i][j]:
                k += 1
            if k == 4:
                accuracy += 1
    print('total no of inputs : ', output_length)
    print("Accurately predicted : ", accuracy)
    return (accuracy / output_length) * 100


if __name__ == '__main__':
    training, testing, classes = util.file_reader()
    input_matrix1, output_matrix1 = get_matrices(testing)

    input_matrix = np.array([[0.997, 0.9991, 0.9985, 0.9978, 0.9988, 0.9984],
                             [0.334, 1.194, 1.172, 3.335, 0.981, 0.979],
                             [1.172, 0.334, 1.194, 0.981, 3.335, 0.979],
                             [1.194, 1.172, 0.334, 0.981, 0.979, 3.335],
                             [0.471, 0.650, 0.986, 5.379, 5.379, 0.983],
                             [0.986, 0.471, 0.650, 0.984, 5.379, 5.379],
                             [0.471, 0.986, 0.650, 5.379, 0.984, 5.379],
                             [0.205, 0.205, 1.188, 7.187, 7.855, 0.985],
                             [1.188, 0.205, 0.205, 0.985, 7.187, 7.855],
                             [0.205, 1.188, 0.205, 7.187, 0.985, 7.855]])

    output_matrix = np.array([[0, 0, 0, 0],
                              [1, 0, 0, 1],