def test1(): import time cal_id = 3 dep_id = 105 t_start = 1407452400 t_end = 1407455985 - (59 * 60) db_con = util.get_db('reader') sv = signal1.SteeringVectors(db_con, cal_id) signal = signal1.Signal(db_con, dep_id, t_start, t_end) sites = util.get_sites(db_con) (center, zone) = util.get_center(db_con) assert zone == util.get_utm_zone(db_con) start = time.time() pos = PositionEstimator(dep_id, sites, center, signal, sv, method=signal1.Signal.MLE) print "Finished in {0:.2f} seconds.".format(time.time() - start) print compute_conf(pos.p, pos.num_sites, sites, pos.splines)
var_name='otu', value_name='abun') dflong = dflong.merge(meta[['site', 'subject_id']], left_on='sample', right_index=True) # Remove any samples corresponding to second time point # Fundo samples end in F2 (corresponding to patient X-F1) # gastric/throat time points end in GI/GF or TI/TF exclude = ['2', 'F', 'sick', 'F2T'] for s in exclude: dflong = dflong[~dflong['sample'].str.endswith(s)] # And remove any lung transplant samples dflong = dflong[~dflong['sample'].str.startswith('05')] ## Correlations sites = util.get_sites() res = [] ## Set up the inputs to parallel code fxn_data = [] print('Setting up input data...') for n in range(args.nshuffle): print(n) # Shuffle patient IDs within site-OTU combination dflong['subject_id'] = dflong\ .groupby(['site', 'otu'])['subject_id']\ .transform(np.random.permutation) # This is very slow. I could probably make it faster somehow? for o, otudf in dflong.groupby('otu'): # For each pairwise site combo: for site1 in sites: