예제 #1
0
    def init_random_indivs(self,
                           size,
                           min_fitness=-math.inf,
                           min_models=0,
                           POOL_SIZE=100):
        if min_fitness == -math.inf and min_models == 0:
            self._individuals = [
                deepcopy(self._base_indiv) for i in range(size)
            ]
            for indiv in self._individuals:
                indiv.set_random()
        else:
            self._start_time = time()
            indivs = []
            tries = 0

            self._individuals = [
                deepcopy(self._base_indiv) for i in range(POOL_SIZE)
            ]
            while len(indivs) < size:
                for indiv in self._individuals:
                    indiv.set_random()

                self._compute_fitness(sort=False)

                for indiv in self._individuals:
                    if indiv.fitness.fitness >= min_fitness and indiv.fitness.models >= min_models:
                        indivs.append(deepcopy(indiv))

                tries += POOL_SIZE
                print_flush("Found {} indivs with {} tries ({}s.)".format(
                    len(indivs), tries, round(time() - self._start_time)))

            self._individuals = indivs[:size]
def apply_gradient_adam(x,
                        g,
                        i_batch,
                        m=None,
                        v=None,
                        step_size=0.001,
                        b1=0.9,
                        b2=0.999,
                        eps=1e-7,
                        verbose=True):

    g = np.array(g)
    if m is None or v is None:
        m = np.zeros_like(x)
        v = np.zeros_like(v)
    m = (1 - b1) * g + b1 * m  # First moment estimate.
    v = (1 - b2) * (g**2) + b2 * v  # Second moment estimate.
    mhat = m / (1 - b1**(i_batch + 1))  # Bias correction.
    vhat = v / (1 - b2**(i_batch + 1))
    d = step_size * mhat / (np.sqrt(vhat) + eps)
    x = x - d
    if verbose:
        try:
            print_flush(
                '  Step size modifier is {}.'.format(
                    np.mean(mhat / (np.sqrt(vhat) + eps))), 0, comm.Get_rank())
        except:
            print('  Step size modifier is {}.'.format(
                np.mean(mhat / (np.sqrt(vhat) + eps))))
    return x, m, v
예제 #3
0
def process(inputs, frame_nums, im_origs, vids, confidence, class_name, soft,
            batch_size2, model, bbox_util, classes):
    found_data = []

    inputs = np.array(inputs).astype(np.float64)
    inputs = preprocess_input(inputs)

    preds = model.predict(inputs, batch_size=batch_size2, verbose=0)
    results = bbox_util.detection_out(preds, soft=soft)

    for result, frame_num, im_res, v in zip(results, frame_nums, im_origs,
                                            vids):
        result = [r if len(r) > 0 else np.zeros((1, 6)) for r in result]
        for r in result:
            if r[1] > confidence:
                this_class_name = classes[int(r[0]) - 1]
                if this_class_name == class_name:
                    found_data.append((v, frame_num, im_res))
                    print_flush(
                        "Found an object of class {} in frame {} in video {}".
                        format(class_name, frame_num, v.stem))

                    # Once we've found an object of the right class, we don't care about this image any more
                    break

    return found_data
    def create_file_objects(self, use_checkpoint=False):

        if len(self.params_list) > 0:
            for param_name in self.params_list:
                fmode = 'a' if use_checkpoint else 'w'
                try:
                    self.params_file_pointer_dict[param_name] = h5py.File(
                        os.path.join(self.output_folder,
                                     'intermediate_{}.h5'.format(param_name)),
                        fmode,
                        driver='mpio',
                        comm=comm)
                    print_flush(
                        'Created intermediate file: {}'.format(
                            os.path.join(
                                self.output_folder,
                                'intermediate_{}.h5'.format(param_name))), 0,
                        rank)
                except:
                    self.params_file_pointer_dict[param_name] = h5py.File(
                        os.path.join(self.output_folder,
                                     'intermediate_{}.h5'.format(param_name)),
                        fmode)
                try:
                    dset_p = self.params_file_pointer_dict[
                        param_name].create_dataset(
                            'obj',
                            shape=self.whole_object_size,
                            dtype='float64',
                            data=np.zeros(self.whole_object_size))
                except:
                    dset_p = self.params_file_pointer_dict[param_name]['obj']
                # if rank == 0: dset_p[...] = 0
                self.params_dset_dict[param_name] = dset_p
        return
예제 #5
0
def encode_handbrake(path, target_path, width, height, fps):
    cmd = ['HandBrakeCLI', '--width', str(width), 
           '--height', str(height), '--rate', str(fps),
           '--crop', '0:0:0:0',
           '-i', str(path), '-o', str(target_path)]
        
    print_flush(' '.join(cmd))       
    output = subprocess.check_output(cmd, stderr=subprocess.STDOUT, universal_newlines=True)
    print_flush("  " + output)
예제 #6
0
 def _run_verbose(self):
     if self._verbose:
         print_flush(
             "Generation: {} | Best fitness: {} | Best ratio: {} | Models: {} | Time: avg per gen = {}s. total = {}s."
             .format(len(self._run_results),
                     round(self._run_results[-1]["fitness"].fitness),
                     round(self._run_results[-1]["fitness"].ratio),
                     self._run_results[-1]["fitness"].models,
                     self._run_results[-1]["time"],
                     round(time() - self._start_time)))
예제 #7
0
def detections_video(detections, videopath, outvideopath, classnames, dataset, res, fps=15, conf_thresh=0.75, show_frame_number=True, coords='pixels'):
    """ Renders a video with the detections drawn on top
    
    Arguments:
    detections        -- the detections as a pandas table
    videopath         -- path to input video
    outvideopath      -- path to output video showing the detections
    classnames        -- list of all the classes
    dataset           -- name of the dataset
    res               -- resolution of output video and coordinates in csv file (assumed to be the same). Probably SSD resolution if performed on direct csv files, and probably the video resolution if performed on csv files with world coordinates
    fps               -- frames-per-second of output video
    conf_thresh       -- Detections with confidences below this are not shown in output video. Set to negative to not visualize confidences, or set to 0.0 to show all of them.   
    show_frame_number -- writes the frame number in the top left corner of the video
    coords            -- coordinate system of detections
    """
    
    masker = Masker(dataset)
    
    calib = None
    if coords == 'world':
        calib = Calibration(dataset)

    num_classes = len(classnames)+1
    colors = class_colors(num_classes)

    outwidth = make_divisible(res[0], 16)
    outheight = make_divisible(res[1], 16)
    pad_vid = True
    if (outwidth == res[0]) and (outheight == res[1]):
        pad_vid = False
    
    with io.get_reader(videopath) as vid:
        with io.get_writer(outvideopath, fps=fps) as outvid:
            for i,frame in enumerate(vid):
                frame = masker.mask(frame, alpha=0.5)
                frame = cv2.resize(frame, (res[0], res[1]))
                
                dets = detections[detections['frame_number']==i]
                if len(dets) > 0:
                    frame = draw(frame, dets, colors, conf_thresh=conf_thresh, coords=coords, calib=calib)
                
                if pad_vid:
                    padded = 255*np.ones((outheight, outwidth, 3), dtype=np.uint8)
                    padded[0:res[1], 0:res[0], :] = frame
                    frame = padded    
                
                if show_frame_number:
                    cv2.putText(frame, 'Frame {}'.format(i), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1, cv2.LINE_AA)
                
                outvid.append_data(frame)
                
                if i%500 == 0:
                    print_flush("Frame {}".format(i))
예제 #8
0
def print_history(history):
    print_flush("frame    x      y   dx   dy    speed  fromdet")
    for h in history:
        line = ""
        for hh in h:
            if type(hh) == datetime:
                continue
            elif (type(hh) == float) or (type(hh) == np.float64):
                line += "  {:.2f}".format(hh)
            else:
                line += '  ' + str(hh)
            
        print_flush(line)
예제 #9
0
def detect(dataset, run, res, conf, bs, clean):

    vids = sorted(glob("{}{}/videos/*.mkv".format(datasets_path, dataset)))

    outfolder = "{}{}_{}/csv/".format(runs_path, dataset, run)
    mkdir(outfolder)

    nvids = len(vids)

    for i, vid in enumerate(vids):
        vname = vid.split('/')[-1]
        vsplit = vname.split('.')
        outname = outfolder + vsplit[0] + '.csv'

        if not clean:
            if os.path.isfile(outname):
                print_flush("Skipping {}".format(outname))
                continue

        before = time()

        print_flush(vname)
        run_detector(dataset, run, vid, outname, res, conf, bs)

        done_percent = round(100 * (i + 1) / nvids)
        now = time()
        mins = floor((now - before) / 60)
        secs = round(now - before - 60 * mins)
        print_flush("{}  {}% done, time: {} min {} seconds".format(
            vid, done_percent, mins, secs))

    print_flush("Done!")
예제 #10
0
파일: klt.py 프로젝트: maxencecarrel/strudl
def klt_save(vidpath, datpath, imsize, mask, outvidpath=None):
    """ Computes and saves KLT point tracks
        
        Arguments:
        vidpath    -- path to input video
        datpath    -- path to store the tracks (use .pklz extension)
        imsize     -- size to resize frames to 
        mask       -- mask to apply if only parts of the image are of interest
        outvidpath -- path to output video, can be None
    """
    tracks = kltfull(vidpath, imsize, mask, outvidpath)

    print_flush("Saving...")
    save(tracks, datpath)
예제 #11
0
def detect(dataset, run, res, conf, bs, clean):
    vids = list((datasets_path / dataset / "videos").glob('*.mkv'))
    vids.sort()

    outfolder = runs_path / "{}_{}".format(dataset, run) / "csv"
    mkdir(outfolder)

    nvids = len(vids)

    for i, vid in enumerate(vids):
        vname = vid.stem
        outname = outfolder / (vname + '.csv')

        if not clean:
            if outname.is_file():
                print_flush("Skipping {}".format(outname))
                continue

        before = time()

        print_flush(vname)
        run_detector(dataset, run, vid, outname, res, conf, bs)

        done_percent = round(100 * (i + 1) / nvids)
        now = time()
        mins = floor((now - before) / 60)
        secs = round(now - before - 60 * mins)
        print_flush("{}  {}% done, time: {} min {} seconds".format(
            vid, done_percent, mins, secs))

    print_flush("Done!")
def apply_gradient_gd(x,
                      g,
                      step_size=0.001,
                      dynamic_rate=True,
                      i_batch=0,
                      first_downrate_iteration=92):

    g = np.array(g)
    if dynamic_rate:
        threshold_iteration = first_downrate_iteration
        i = 1
        while threshold_iteration < i_batch:
            threshold_iteration += first_downrate_iteration * 2**i
            i += 1
            step_size /= 2.
            print_flush('  -- Step size halved.', 0, comm.Get_rank())
    x = x - step_size * g

    return x
예제 #13
0
def main(cmd, res, dataset, run, conf, fps, coords):
    res = parse_resolution(res)
    classnames = get_classnames(dataset)
    
    local_output = False
    csvs = []
    if cmd == "findvids":
        if coords == "pixels":
            query = "{rp}{ds}_{r}/csv/*.csv".format(rp=runs_path, ds=dataset, r=run)
        elif coords == "world":
            query = "{rp}{ds}_{r}/detections_world/*.csv".format(rp=runs_path, ds=dataset, r=run)
            
        found = glob(query)
        found.sort()
        csvs.extend(found)
    else:
        csvs.append(cmd)
        local_output = True
    
    if coords == "pixels":
        out_folder = '{rp}{ds}_{r}/detections/'.format(rp=runs_path, ds=dataset, r=run)
    elif coords == "world":
        out_folder = '{rp}{ds}_{r}/detections_world/'.format(rp=runs_path, ds=dataset, r=run)
        
    mkdir(out_folder)
    
    for csv_path in csvs:
        vidname = right_remove(csv_path.split('/')[-1], '.csv')
        if coords == "world":
            vidname = right_remove(vidname, '_world')
            
        vid_path = "{dsp}{ds}/videos/{v}.mkv".format(dsp=datasets_path, ds=dataset, v=vidname)

        if local_output:
            outvid_path = '{}.mp4'.format(vidname)
        else:
            outvid_path = '{}{}.mp4'.format(out_folder, vidname)        
        
        detections = pd.read_csv(csv_path)
        detections_video(detections, vid_path, outvid_path, classnames, dataset, res, fps=fps, conf_thresh=conf, coords=coords)
        print_flush(outvid_path)
    
    print_flush("Done!")
예제 #14
0
def main(cmd, res, dataset, run, conf, fps, coords):
    res = parse_resolution(res)
    classnames = get_classnames(dataset)
    
    local_output = False
    csvs = []
    if cmd == "findvids":
        if coords == "pixels":
            found = (runs_path / "{}_{}".format(dataset,run) / "csv").glob('*.csv')
        elif coords == "world":
            found = (runs_path / "{}_{}".format(dataset,run) / "detections_world").glob('*.csv')
            
        found = list(found)
        found.sort()
        csvs.extend(found)
    else:
        csvs.append(cmd)
        local_output = True
    
    if coords == "pixels":
        out_folder = runs_path / "{}_{}".format(dataset,run) / "detections"
    elif coords == "world":
        out_folder = runs_path / "{}_{}".format(dataset,run) / "detections_world"
        
    mkdir(out_folder)
    
    for csv_path in csvs:
        vidname = csv_path.stem
        if coords == "world":
            vidname = right_remove(vidname, '_world')
        
        vid_path = datasets_path / dataset / "videos" / (vidname+'.mkv')    

        if local_output:
            outvid_path = Path('.') / '{}.mp4'.format(vidname)
        else:
            outvid_path = out_folder / '{}.mp4'.format(vidname)        
        
        detections = pd.read_csv(csv_path)
        detections_video(detections, vid_path, outvid_path, classnames, dataset, res, fps=fps, conf_thresh=conf, coords=coords)
        print_flush(outvid_path)
    
    print_flush("Done!")
    def apply_gradient(self,
                       x,
                       g,
                       i_batch,
                       step_size=0.001,
                       b1=0.9,
                       b2=0.999,
                       eps=1e-7,
                       verbose=True,
                       shared_file_object=False,
                       m=None,
                       v=None):

        if m is None or v is None:
            if shared_file_object:
                m = self.params_chunk_array_dict['m']
                v = self.params_chunk_array_dict['v']
            else:
                m = self.params_whole_array_dict['m']
                v = self.params_whole_array_dict['v']
        m = (1 - b1) * g + b1 * m  # First moment estimate.
        v = (1 - b2) * (g**2) + b2 * v  # Second moment estimate.
        mhat = m / (1 - b1**(i_batch + 1))  # Bias correction.
        vhat = v / (1 - b2**(i_batch + 1))
        d = step_size * mhat / (np.sqrt(vhat) + eps)
        x = x - d
        if verbose:
            try:
                print_flush(
                    '  Step size modifier is {}.'.format(
                        np.mean(mhat / (np.sqrt(vhat) + eps))), 0,
                    comm.Get_rank())
            except:
                print('  Step size modifier is {}.'.format(
                    np.mean(mhat / (np.sqrt(vhat) + eps))))
        if shared_file_object:
            self.params_chunk_array_dict['m'] = m
            self.params_chunk_array_dict['v'] = v
        else:
            self.params_whole_array_dict['m'] = m
            self.params_whole_array_dict['v'] = v
        self.i_batch += 1
        return x
예제 #16
0
def encode_imageio(path, target_path, width, height, fps):
    rescale = True
    
    with iio.get_reader(path) as invid:
        with iio.get_writer(target_path, fps=fps) as outvid:
            for i,frame in enumerate(invid):
            
                # If resolution is the same, we should not rescale
                if i == 0:
                    shape = frame.shape
                    if (shape[0] == height) and (shape[1] == width):
                        rescale = False
                        print_flush("Does not resize")
            
                if rescale:
                    frame = cv2.resize(frame, (width, height))
                    
                outvid.append_data(frame)
                if (i+1)%500 == 0:
                    print_flush("  {}".format(i+1))
예제 #17
0
def get_model(name, experiment, input_shape, num_classes=6, verbose=True):
    """ Gets an SSD model, with trained weights
    
        Arguments:
        name        -- name of the dataset
        experiment  -- name of this training run
        input_shape -- size of images fed to SSD as a tuple like (640,480,3)
        num_classes -- the number of different object classes (including background)
    """
    model = SSD300((input_shape[1], input_shape[0], input_shape[2]),
                   num_classes=num_classes)
    weights_files = list((runs_path / "{}_{}".format(name, experiment) /
                          "checkpoints").glob('*.hdf5'))
    weights_files_loss = np.array(
        [float(wf.stem.split('-')[-1]) for wf in weights_files])
    weights_file = weights_files[np.argmin(weights_files_loss)]
    model.load_weights(weights_file, by_name=True)
    if verbose:
        print_flush('Model loaded from {}'.format(weights_file))
    return model
예제 #18
0
def main(dataset, num_ims, ims_per_vid, train_amount, night):
    outbasepath = datasets_path / dataset / "objects"
    trainpath = outbasepath / "train"
    testpath = outbasepath / "test"

    ts = Timestamps(dataset)
    vidnames = filtering(get_vidnames(dataset), num_ims // ims_per_vid, ts,
                         night)
    train, test = train_test_split(vidnames, train_amount)

    print_flush("Train:")
    for v in train:
        print_flush(v)
        gen_images(trainpath, v, ims_per_vid)

    print_flush("Test:")
    for v in test:
        print_flush(v)
        gen_images(testpath, v, ims_per_vid)

    print_flush("Done!")
예제 #19
0
파일: klt.py 프로젝트: maxencecarrel/strudl
def main(cmd, dataset, imsize, visualize):
    imsize = parse_resolution(imsize)

    mask = Masker(dataset)

    if cmd == "findvids" or cmd == "continue":
        vidfolder = datasets_path / dataset / "videos"
        kltfolder = datasets_path / dataset / "klt"
        mkdir(kltfolder)

        allvids = list(vidfolder.glob('*.mkv'))
        allvids.sort()

        if cmd == "continue":
            existing = list(kltfolder.glob('*.pklz'))
            existing.sort()
            existing = [x.stem for x in existing]
            allvids = [x for x in allvids if not x.stem in existing]

        for vidpath in allvids:
            datpath = kltfolder / (vidpath.stem + '.pklz')
            if visualize:
                outvidpath = datpath.with_name(datpath.stem + '_klt.mp4')
                print_flush("{}   ->   {} & {}".format(vidpath, datpath,
                                                       outvidpath))
            else:
                outvidpath = None
                print_flush("{}   ->   {}".format(vidpath, datpath))

            klt_save(vidpath, datpath, imsize, mask, outvidpath)

        print_flush("Done!")
    else:
        raise (ValueError())
예제 #20
0
def generate_tracks_in_zip(dataset, run, tf, coords):
    assert (tf in all_track_formats)

    tracks_format = tf
    if coords == 'pixels':
        tracks = glob("{rp}{dn}_{rn}/tracks/*.pklz".format(rp=runs_path,
                                                           dn=dataset,
                                                           rn=run))
    elif coords == 'world':
        tracks = glob("{rp}{dn}_{rn}/tracks_world/*.pklz".format(rp=runs_path,
                                                                 dn=dataset,
                                                                 rn=run))
    else:
        raise (ValueError("Incorrect coordinate system: {}".format(coords)))

    tracks.sort()

    zips_folder = "{rp}{dn}_{rn}/track_zips/".format(rp=runs_path,
                                                     dn=dataset,
                                                     rn=run)
    mkdir(zips_folder)

    zip_path = "{zf}{tf}.zip".format(zf=zips_folder, tf=tracks_format)
    if coords == 'world':
        zip_path = zip_path.replace('.zip', '_world.zip')

    with ZipFile(zip_path, mode='w', compression=ZIP_DEFLATED) as z:
        for t in tracks:
            tname = t.split('/')[-1]
            print_flush(tname)

            text = format_tracks_from_file(t, tracks_format, coords)

            suffix = '.txt'
            if tracks_format == 'csv':
                suffix = '.csv'
            z.writestr(tname.replace('.pklz', suffix), text)

    print_flush("Done!")
    return zip_path
예제 #21
0
파일: train.py 프로젝트: ACov96/upscaler
def train(training_data, dev_data, args):
    training_gen = data.DataLoader(training_data, batch_size=2)
    dev_gen = data.DataLoader(dev_data, batch_size=2)
    device = torch.device('cuda' if cuda.is_available() else 'cpu')
    print('Initializing model')
    model = SRCNN()
    loss = RMSE()
    if cuda.device_count() > 1:
        print('Using %d CUDA devices' % cuda.device_count())
        model = nn.DataParallel(
            model, device_ids=[i for i in range(cuda.device_count())])
    model.to(device)
    loss.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    def _train(data, opt=True):
        total = 0
        for y, x in data:
            y, x = y.to(device), x.to(device)
            pred_y = model(x)
            l = loss(pred_y, y)
            total += l.item()
            if opt:
                optimizer.zero_grad()
                l.backward()
                optimizer.step()
        cuda.synchronize()
        return total

    print('Training')
    for ep in range(args.ep):
        train_loss = _train(training_gen)
        dev_loss = _train(dev_gen, opt=False)
        print_flush('Epoch %d: Train %.4f Dev %.4f' %
                    (ep, train_loss, dev_loss))
        if ep % 50 == 0:
            save_model(model, args.o)
    return model
예제 #22
0
def run_detector(dataset, run, videopath, outname, input_shape, conf_thresh,
                 batch_size):

    with io.get_reader(videopath) as vid:
        vlen = len(vid)

    vlen2 = next_multiple(vlen, batch_size)
    seq_len = next_multiple(1000, batch_size)

    # In the past, there was a memory leak that forced a division of the video into
    # shorted sequences. The memory leak was fixed, but this was kept because of
    # laziness.
    seqs = make_seqs(vlen2, seq_len)

    for i_seq, seq in enumerate(seqs):
        print_flush("From frame {} to {}...".format(seq[0], seq[1]))

        completed = subprocess.run([
            python_path, "detect_csv_sub.py", "--dataset={}".format(dataset),
            "--run={}".format(run), "--input_shape={}".format(input_shape),
            "--seq_start={}".format(seq[0]), "--seq_stop={}".format(
                seq[1]), "--videopath={}".format(videopath),
            "--conf_thresh={}".format(conf_thresh), "--i_seq={}".format(i_seq),
            "--outname={}".format(outname),
            "--batch_size={}".format(batch_size)
        ],
                                   stdout=PIPE,
                                   stderr=PIPE)
        if not (completed.returncode == 0):
            raise Exception(
                "ERROR: Subprocess crashed. Return code: {}".format(
                    completed.returncode))
        else:
            print_flush("Subprocess completed successfully")

        print_flush("Subprocess output:")
        print_flush(completed.stdout.decode('UTF-8'))
        print_flush(completed.stderr.decode('UTF-8'))
예제 #23
0
def generate_tracks_in_zip(dataset, run, tf, coords):
    assert (tf in all_track_formats)

    tracks_format = tf
    if coords == 'pixels':
        tracks = (runs_path / "{}_{}".format(dataset, run) /
                  "tracks").glob('*.pklz')
    elif coords == 'world':
        tracks = (runs_path / "{}_{}".format(dataset, run) /
                  "tracks_world").glob('*.pklz')
    else:
        raise (ValueError("Incorrect coordinate system: {}".format(coords)))

    tracks = list(tracks)
    tracks.sort()

    zips_folder = runs_path / "{}_{}".format(dataset, run) / "track_zips"
    mkdir(zips_folder)

    zip_path = zips_folder / (tracks_format + '.zip')
    if coords == 'world':
        zip_path = zip_path.with_name(zip_path.stem + '_world.zip')

    with ZipFile(str(zip_path), mode='w', compression=ZIP_DEFLATED) as z:
        for t in tracks:
            tname = t.name
            print_flush(tname)

            text = format_tracks_from_file(t, tracks_format, coords)

            suffix = '.txt'
            if tracks_format == 'csv':
                suffix = '.csv'
            z.writestr(tname.replace('.pklz', suffix), text)

    print_flush("Done!")
    return zip_path
예제 #24
0
def main(cmd, dataset, imsize, visualize):
    imsize = parse_resolution(imsize)

    mask = Masker(dataset)

    if cmd == "findvids" or cmd == "continue":
        vidfolder = "{}{}/videos/".format(datasets_path, dataset)
        kltfolder = "{}{}/klt/".format(datasets_path, dataset)
        mkdir(kltfolder)

        allvids = sorted(glob(vidfolder + "*.mkv"))

        if cmd == "continue":
            existing = sorted(glob(kltfolder + "*.pklz"))
            existing = [
                right_remove(x.split('/')[-1], '.pklz') for x in existing
            ]
            allvids = [
                x for x in allvids
                if not right_remove(x.split('/')[-1], '.mkv') in existing
            ]

        for vidpath in allvids:
            datpath = kltfolder + vidpath.split('/')[-1].replace(
                '.mkv', '.pklz')
            if visualize:
                outvidpath = datpath.replace('.pklz', '_klt.mp4')
                print_flush("{}   ->   {} & {}".format(vidpath, datpath,
                                                       outvidpath))
            else:
                outvidpath = None
                print_flush("{}   ->   {}".format(vidpath, datpath))

            klt_save(vidpath, datpath, imsize, mask, outvidpath)

        print_flush("Done!")
    else:
        raise (ValueError())
예제 #25
0
def main(dataset, run, input_shape, seq_start, seq_stop, videopath, conf_thresh, i_seq, outname, batch_size):
    
    print_flush("> Predicting...")
    classes = get_classnames(dataset)
    masker = Masker(dataset)
    
    input_shape = parse_resolution(input_shape)
    
    num_classes = len(classes)+1
    model = get_model(dataset, run, input_shape, num_classes, verbose=False)
    priors = get_priors(model, input_shape)
    bbox_util = BBoxUtility(num_classes, priors)
    
    
    width = input_shape[0]
    height = input_shape[1]
    
    inputs = []
    outputs = []
    old_frame = None
    
    with io.get_reader(videopath) as vid: 
        vlen = len(vid)
        for i_in_seq in range(seq_start, seq_stop):
            if i_in_seq < vlen:
                frame = vid.get_data(i_in_seq)
                frame = masker.mask(frame)
                old_frame = frame
            else:
                frame = old_frame
                
            resized = cv2.resize(frame, (width, height))
            inputs.append(resized)
            
            if len(inputs) == batch_size:
                inputs2 = np.array(inputs)
                inputs2 = inputs2.astype(np.float32)
                inputs2 = preprocess_input(inputs2)
                
                y = model.predict_on_batch(inputs2)
                outputs.append(y)
                
                inputs = []     
        
    preds = np.vstack(outputs)
    
    print_flush("> Processing...")
    all_detections = []   
    seq_len = seq_stop - seq_start
         
    for i in range(seq_len):
        frame_num = i + seq_start
        
        if frame_num < vlen:           
            pred = preds[i, :]
            pred = pred.reshape(1, pred.shape[0], pred.shape[1])
            results = bbox_util.detection_out(pred, soft=False)

            detections = process_results(results, width, height, classes, conf_thresh, frame_num)
            all_detections.append(detections)
    
    dets = pd.concat(all_detections)
    
    # For the first line, we should open in write mode, and then in append mode
    # This way, we still overwrite the files if this script is run multiple times
    open_mode = 'a'
    include_header = False
    if i_seq == 0:
        open_mode = 'w'
        include_header = True

    print_flush("> Writing to {} ...".format(outname))    
    with open(outname, open_mode) as f:
        dets.to_csv(f, header=include_header) 
예제 #26
0
파일: klt.py 프로젝트: maxencecarrel/strudl
def kltfull(video_file, imsize, mask, out_file=None):
    """ Performs KLT point tracking on a video.
    
    Arguments:
    video_file -- path to a source video file
    imsize     -- size which frames will be resized to
    mask       -- a Masker object which can be applied to only look at parts of the images
    out_file   -- if set to a path to an output video path, then a video showing
                    the tracked points is created. Can be None, in which case no
                    video is made
    """

    # Used for not finding new points to track too close to existing ones
    mask_to_copy = 255 - cv2.resize(mask.saved_mask[:, :, 3], imsize)

    render_vid = True
    if out_file is None:
        render_vid = False

    track_len = 10
    detect_interval = 10
    tracks = []
    frame_idx = 0

    if render_vid:
        n_colors = 128
        colors = get_colors(n_colors)
        # We have a bunch of colors, and each point track gets one. Some point tracks
        # will share colors, but that is not really an issue. These are for visualization only.

    id_generator = count()

    lk_params = dict(winSize=(15, 15),
                     maxLevel=1,
                     criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
                               10, 0.03))

    feature_params = dict(maxCorners=5000,
                          qualityLevel=0.01,
                          minDistance=30,
                          blockSize=7)

    lost_tracks = []
    start_time = time()

    if render_vid:
        avi = io.get_writer(out_file, fps=10)

    with io.get_reader(video_file) as invid:
        vidlength = len(invid)
        for systime, frame in enumerate(invid):

            if systime % 400 == 0:
                print_flush("{} % done, elapsed time: {} s".format(
                    round(100 * systime / vidlength),
                    round(time() - start_time)))

            frame = cv2.resize(frame, imsize)
            frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            vis = frame.copy()

            if len(tracks) > 0:
                img0, img1 = prev_gray, frame_gray
                p0 = np.float32([tr[-1][1:3]
                                 for tr in tracks]).reshape(-1, 1, 2)

                # See how the points have moved between the two frames
                p1, st, err1 = cv2.calcOpticalFlowPyrLK(
                    img0, img1, p0, None, **lk_params)
                p0r, st, err = cv2.calcOpticalFlowPyrLK(
                    img1, img0, p1, None, **lk_params)
                d = abs(p0 - p0r).reshape(-1, 2).max(-1)
                good = d < 1
                new_tracks = []
                for tr, (x, y), good_flag, e in zip(tracks, p1.reshape(-1, 2),
                                                    good, err1.flat):
                    if not good_flag:
                        lost_tracks.append(tr)
                        continue
                    tr.append((systime, x, y))

                    new_tracks.append(tr)
                    if render_vid:
                        cv2.circle(vis, (x, y), 2,
                                   colors[tr.id_num % n_colors], -1)
                tracks = new_tracks
                if render_vid:
                    for i_col, col in enumerate(colors):
                        cv2.polylines(vis, [
                            np.int32([(x, y) for f, x, y in tr[-20:]])
                            for tr in tracks if (tr.id_num % n_colors) == i_col
                        ], False, col)

            if frame_idx % detect_interval == 0:
                # Makes sure we don't look for new points near existing ones
                mask2 = mask_to_copy.copy()
                for x, y in [np.int32(tr[-1][1:3]) for tr in tracks]:
                    cv2.circle(mask2, (x, y), 5, 0, -1)
                p = cv2.goodFeaturesToTrack(frame_gray,
                                            mask=mask2,
                                            **feature_params)
                if p is not None:
                    for x, y in np.float32(p).reshape(-1, 2):
                        nt = Track([(systime, int(x), int(y))])
                        nt.id_num = next(id_generator)
                        tracks.append(nt)

                # Remove tracks that go outside the masked region
                good_tracks = []
                for checked_track in tracks:
                    last_time, last_x, last_y = checked_track[-1]
                    x = clamp(int(last_x), 0, imsize[0] - 1)
                    y = clamp(int(last_y), 0, imsize[1] - 1)
                    sampled = mask_to_copy[y, x]
                    if sampled > 127:
                        good_tracks.append(checked_track)
                    else:
                        lost_tracks.append(checked_track)

                tracks = good_tracks

            frame_idx += 1
            prev_gray = frame_gray

            if render_vid:
                avi.append_data(vis)
    lost_tracks.extend(tracks)

    if render_vid:
        avi.close()

    for tr in lost_tracks:
        for i in range(len(tr)):
            t, x, y = tr[i]
            tr[i] = (t, int(round(x)), int(round(y)))
    return lost_tracks
예제 #27
0
def test_on_video(model,
                  name,
                  experiment,
                  videopath,
                  outvideopath,
                  classnames,
                  batch_size=32,
                  input_shape=(480, 640, 3),
                  soft=False,
                  width=480,
                  height=640,
                  conf_thresh=0.75,
                  csv_conf_thresh=0.75):
    """ Applies a trained SSD model to a video
    
    Arguments:
    model           -- the SSD model, e.g. from get_model
    name            -- name of dataset
    experiment      -- name of training run
    videopath       -- path to input video
    outvideopath    -- path to output video showing the detections
    classnames      -- list of all the classes
    batch_size      -- number of images processed in parallell, lower this if you get out-of-memory errors
    input_shape     -- size of images fed to SSD
    soft            -- Whether to do soft NMS or normal NMS
    width           -- Width to scale detections with (can be set to 1 if detections are already on right scale)
    height          -- Height to scale detections with (can be set to 1 if detections are already on right scale)
    conf_thresh     -- Detections with confidences below this are not shown in output video. Set to negative to not visualize confidences.
    csv_conf_thresh -- Detections with confidences below this are ignored. This should be same as conf_thresh unless conf_thresh is negative.
    
    """
    masker = Masker(name)

    num_classes = len(classnames) + 1
    colors = class_colors(num_classes)

    make_vid = True
    suffix = outvideopath.split('.')[-1]
    if suffix == 'csv':
        make_vid = False
        csvpath = outvideopath
    else:
        csvpath = outvideopath.replace('.{}'.format(suffix), '.csv')

    print_flush('Generating priors')
    im_in = np.random.random(
        (1, input_shape[1], input_shape[0], input_shape[2]))
    priors = model.predict(im_in, batch_size=1)[0, :, -8:]
    bbox_util = BBoxUtility(num_classes, priors)

    vid = io.get_reader(videopath)
    if make_vid:
        outvid = io.get_writer(outvideopath, fps=30)

    inputs = []
    frames = []

    all_detections = []
    for i, frame in enumerate(vid):
        frame = masker.mask(frame)
        resized = cv2.resize(frame, (input_shape[0], input_shape[1]))

        frames.append(frame.copy())
        inputs.append(resized)

        if len(inputs) == batch_size:
            inputs = np.array(inputs).astype(np.float64)
            inputs = preprocess_input(inputs)

            preds = model.predict(inputs, batch_size=batch_size, verbose=0)
            results = bbox_util.detection_out(preds, soft=soft)

            for result, frame, frame_number in zip(results, frames,
                                                   range(i - batch_size, i)):
                result = [
                    r if len(r) > 0 else np.zeros((1, 6)) for r in result
                ]
                raw_detections = pd.DataFrame(np.vstack(result),
                                              columns=[
                                                  'class_index', 'confidence',
                                                  'xmin', 'ymin', 'xmax',
                                                  'ymax'
                                              ])

                rescale(raw_detections, 'xmin', width)
                rescale(raw_detections, 'xmax', width)
                rescale(raw_detections, 'ymin', height)
                rescale(raw_detections, 'ymax', height)
                rescale(raw_detections, 'class_index', 1)

                ci = raw_detections['class_index']
                cn = [classnames[int(x) - 1] for x in ci]
                raw_detections['class_name'] = cn

                raw_detections['frame_number'] = (frame_number + 2)
                all_detections.append(raw_detections[
                    raw_detections.confidence > csv_conf_thresh])

                if make_vid:
                    frame = draw(frame,
                                 raw_detections,
                                 colors,
                                 conf_thresh=conf_thresh)
                    outvid.append_data(frame)

            frames = []
            inputs = []

        if i % (10 * batch_size) == 0:
            print_flush(i)

    detections = pd.concat(all_detections)

    detections.to_csv(csvpath)
예제 #28
0
def recode_minutes_imageio(files, logs_basepath, minutes, width, height, fps, target, logs_target, suffix):
    """ Recodes videos such that each video is `minutes` many minutes long.
        Uses imageio to do this. Using handbrake would probably be possible but 
        a bit cumbersome to implement.
    """
    
    assert(len(files) > 0)
    
    # Build a structure of the start times of each video, to sort them
    print_flush("Structuring...")
    vids = []
    for vid_path in files:
        video_name = vid_path.stem
        log_path = logs_basepath / (video_name + '.log')
        
        with log_path.open('r') as f:
            first_line = f.readline().rstrip()
        
        first_time, frame_num = line_to_datetime(first_line)
        
        vids.append( (vid_path, log_path, first_time) )
    
    vids.sort(key = lambda x: x[2])
    
    # Go through the videos and build new videos, frame by frame
    can_make_more = True
    
    i_vid = 0
    i_frame = 0
    
    invid = iio.get_reader(vids[i_vid][0])
    inlog = read_log(vids[i_vid][1])
    
    rescale = True
    first_frame = invid.get_data(0)
    shape = first_frame.shape
    if (shape[0] == height) and (shape[1] == width):
        rescale = False
        print_flush("Does not resize")
    else:
        print_flush("Will resize to ({},{})".format(width, height))
                
    curr_time = vids[i_vid][2]
    
    while can_make_more:
        
        vidpath, logpath = generate_paths(curr_time, target, logs_target, suffix)
        print_flush("Making {}...".format(vidpath))
        
        outvid = iio.get_writer(vidpath, fps=fps)
        outlog = []
        out_framenum = 0
        
        first_time = curr_time
        
        while (curr_time - first_time).total_seconds()/60.0 < minutes:
            
            if i_frame >= len(inlog):
                # We need to jump to the next input video and log
                i_vid += 1
                i_frame = 0
                
                if i_vid >= len(vids):
                    can_make_more = False
                    break
                
                invid.close()
                invid = iio.get_reader(vids[i_vid][0])
                inlog = read_log(vids[i_vid][1])
            
            frame = invid.get_data(i_frame)
            line = inlog[i_frame]
            
            curr_time, _ = line_to_datetime(line)
            
            i_frame += 1
            
            if rescale:
                frame = cv2.resize(frame, (width, height))
            
            splot = line.split(" ")
            splot[0] = fill(out_framenum, 5)
            line = " ".join(splot)
            
            outvid.append_data(frame)
            outlog.append(line)
            
            out_framenum += 1
        
        # Close current output video/log
        outvid.close()
        
        with logpath.open('w') as f:
            for line in outlog:
                f.write("{}\n".format(line))
예제 #29
0
def import_videos(query, dataset, resolution, fps, suffix, method, logs, minutes):   
    
    assert(suffix == '.mkv')
    
    logs = Path(logs)
    assert(logs.is_dir())
    
    if method == "imageio":
        encode = encode_imageio
    elif method == "handbrake":
        encode = encode_handbrake
    else:
        raise(ValueError("Incorrect method {}".format(method)))

    resolution = parse_resolution(resolution)
    width, height = resolution[0:2]
    
    target = datasets_path / dataset / "videos"
    mkdir(target)
    
    logs_target = datasets_path / dataset / "logs"
    mkdir(logs_target)
    
    files = glob(query)
    files.sort()
    files = [Path(x) for x in files]

    if minutes == 0:
        for path in files:
            video_name = path.stem
            
            src_log_path = logs / (video_name + '.log')
            with src_log_path.open('r') as f:
                first = f.readline().rstrip()
            first_time, _ = line_to_datetime(first)
            target_path, target_log_path = generate_paths(first_time, target, logs_target, suffix)
            
            print_flush(target_path)
            
            encode(path, target_path, width, height, fps)
            
            if validate_logfile(src_log_path):
                copy(str(src_log_path), str(target_log_path)) # python 3.5 and earlier compatability
                print_flush("Log file OK! {}".format(src_log_path))
            else:
                raise(ValueError("Incorrect log file {}".format(src_log_path)))
    else:
        if method == "handbrake":
            # Recoding videos using handbrake into new clips of different lengths, based on log files,
            # would be cumbersome to implement. Therefore, we instead first recode every video with
            # handbrake and then use imageio to recode the videos again into the desired length. This
            # should still provide handbrake's robustness to strange videos, even though this solution is slow.
            tmp_folder = Path("/data/tmp_import/")
            if tmp_folder.is_dir():
                rmtree(str(tmp_folder))
            mkdir(tmp_folder)
            
            for i,path in enumerate(files):
                print_flush("Handbraking {} ...".format(path))
                video_name = path.stem
                src_log_path = logs / (video_name + '.log')
                
                target_path = tmp_folder / (i + suffix)
                target_log_path = tmp_folder / (i + '.log')
                
                if validate_logfile(src_log_path):
                    copy(str(src_log_path), str(target_log_path))
                else:
                    raise(ValueError("Incorrect log file {}".format(src_log_path)))
                
                encode(path, target_path, width, height, fps)
            
            files = list(tmp_folder.glob('*' + suffix))
            files.sort()
            logs = tmp_folder
            print_flush("Handbrake section complete")

        recode_minutes_imageio(files, logs, minutes, width, height, fps, target, logs_target, suffix)
        
        if method == "handbrake":
            rmtree(str(tmp_folder))
                    
    print_flush("Done!")       
예제 #30
0
def main(dataset, run, n_clips, clip_length):
    dc = DatasetConfig(dataset)
    rc = RunConfig(dataset, run)
    mask = Masker(dataset)
    classes = get_classnames(dataset)
    num_classes = len(classes) + 1
    calib = Calibration(dataset)

    dataset_path = "{dsp}{ds}/".format(dsp=datasets_path, ds=dataset)
    run_path = "{rp}{ds}_{r}/".format(rp=runs_path, ds=dataset, r=run)

    # Grab a bunch of videos
    vids_query = "{dsp}videos/*.mkv".format(dsp=dataset_path)
    all_vids = glob(vids_query)
    all_vids = [right_remove(x.split('/')[-1], '.mkv') for x in all_vids]

    all_vids.sort()

    vids = []

    if n_clips > len(all_vids):
        n_clips = len(all_vids)

    if n_clips == len(all_vids):
        vids = all_vids
    else:
        while len(vids) < n_clips:
            vid = choice(all_vids)
            if not vid in vids:
                vids.append(vid)

    print_flush(vids)

    # Find out what has been run on all of these videos, what to include
    include_klt = True
    include_pixeldets = True
    include_worlddets = True
    include_worldtracks = True

    klts = []
    pixeldets = []
    worlddets = []
    worldtracks = []

    # Point tracks need to be converted for faster access
    vidres = dc.get('video_resolution')
    kltres = dc.get('point_track_resolution')

    class KLTConfig(object):
        klt_x_factor = 0
        klt_y_factor = 0

    klt_config = KLTConfig()
    klt_config.klt_x_factor = vidres[0] / kltres[0]
    klt_config.klt_y_factor = vidres[1] / kltres[1]

    ssdres = rc.get('detector_resolution')
    x_scale = vidres[0] / ssdres[0]
    y_scale = vidres[1] / ssdres[1]

    colors = class_colors(num_classes)

    for vid in vids:
        f = get_klt_path(dataset_path, vid)
        if not isfile(f):
            include_klt = False
        else:
            klt = load(f)
            klt, klt_frames = convert_klt(klt, klt_config)
            pts = (klt, klt_frames, class_colors(n_cols_klts))
            klts.append(pts)

        f = get_pixeldet_path(run_path, vid)
        if not isfile(f):
            include_pixeldets = False
        else:
            dets = pd.read_csv(f)

            pixeldets.append((dets, colors, x_scale, y_scale))

        f = get_worlddet_path(run_path, vid)
        if not isfile(f):
            include_worlddets = False
        else:
            dets = pd.read_csv(f)

            worlddets.append((dets, colors, calib))

        f = get_worldtracks_path(run_path, vid)
        if not isfile(f):
            include_worldtracks = False
        else:
            tracks = load(f)
            worldtracks.append((tracks, class_colors(n_cols_tracks), calib))

    print_flush("Point tracks: {}".format(include_klt))
    print_flush("Pixel coordinate detections: {}".format(include_pixeldets))
    print_flush("World coordinate detections: {}".format(include_worlddets))
    print_flush("World coordinate tracks: {}".format(include_worldtracks))

    # Decide where to start and stop in the videos
    clip_length = clip_length * dc.get(
        'video_fps')  # convert from seconds to frames

    print_flush("Clip length in frames: {}".format(clip_length))

    clips = []
    for vid in vids:
        start, stop = make_clip(vid, clip_length, dataset_path)
        clips.append((start, stop))

    incs = [
        include_klt, include_pixeldets, include_worlddets, include_worldtracks
    ]
    funs = [klt_frame, pixeldet_frame, worlddet_frame, worldtracks_frame]
    dats = [klts, pixeldets, worlddets, worldtracks]
    nams = [
        "Point tracks", "Detections in pixel coordinates",
        "Detections in world coordinates", "Tracks in world coordinates"
    ]

    print_flush(clips)

    with iio.get_writer("{trp}summary.mp4".format(trp=run_path),
                        fps=dc.get('video_fps')) as outvid:
        for i_vid, vid in enumerate(vids):
            print_flush(vid)
            old_prog = 0

            with iio.get_reader("{dsp}videos/{v}.mkv".format(dsp=dataset_path,
                                                             v=vid)) as invid:
                start, stop = clips[i_vid]
                for i_frame in range(start, stop):
                    frame = invid.get_data(i_frame)

                    pieces = []

                    for inc, fun, dat, nam in zip(incs, funs, dats, nams):
                        if inc:
                            piece = fun(dat[i_vid],
                                        mask.mask(frame.copy(), alpha=0.5),
                                        i_frame)
                            draw_text(piece, vid, i_frame, nam)
                            pieces.append(piece)

                    outvid.append_data(join(pieces))

                    prog = float(i_frame - start) / (stop - start)
                    if prog - old_prog > 0.1:
                        print_flush("{}%".format(round(prog * 100)))
                        old_prog = prog

    print_flush("Done!")