# dW[i] = gradient of W[i] dW = [None]*(n+1) pre_dW = [None]*(n+1) # preconditioned dW pre_dW_stable = [None]*(n+1) # preconditioned stable dW cov_A = [None]*(n+1) # covariance of activations[i] cov_B2 = [None]*(n+1) # covariance of synthetic backprops[i] vars_svd_A = [None]*(n+1) vars_svd_B2 = [None]*(n+1) for i in range(1,n+1): cov_A[i] = init_var(A[i]@t(A[i])/dsize, "cov_A%d"%(i,)) cov_B2[i] = init_var(B2[i]@t(B2[i])/dsize, "cov_B2%d"%(i,)) vars_svd_A[i] = u.SvdWrapper(cov_A[i],"svd_A_%d"%(i,)) vars_svd_B2[i] = u.SvdWrapper(cov_B2[i],"svd_B2_%d"%(i,)) if use_tikhonov: whitened_A = u.regularized_inverse2(vars_svd_A[i],L=Lambda) @ A[i] else: whitened_A = u.pseudo_inverse2(vars_svd_A[i]) @ A[i] if use_tikhonov: whitened_B2 = u.regularized_inverse2(vars_svd_B2[i],L=Lambda) @ B[i] else: whitened_B2 = u.pseudo_inverse2(vars_svd_B2[i]) @ B[i] whitened_A_stable = u.pseudo_inverse_sqrt2(vars_svd_A[i]) @ A[i] whitened_B2_stable = u.pseudo_inverse_sqrt2(vars_svd_B2[i]) @ B[i] pre_dW[i] = (whitened_B2 @ t(whitened_A))/dsize pre_dW_stable[i] = (whitened_B2_stable @ t(whitened_A_stable))/dsize dW[i] = (B[i] @ t(A[i]))/dsize # Loss function reconstruction = u.L2(err) / (2 * dsize) sparsity = beta * tf.reduce_sum(kl(rho, rho_hat))
def main(): np.random.seed(0) tf.set_random_seed(0) dtype = np.float32 # 64-bit doesn't help much, search for 64-bit in # https://www.wolframcloud.com/objects/5f297f41-30f7-4b1b-972c-cac8d1f8d8e4 u.default_dtype = dtype machine_epsilon = np.finfo(dtype).eps # 1e-7 or 1e-16 train_images = load_MNIST.load_MNIST_images('data/train-images-idx3-ubyte') dsize = 10000 patches = train_images[:, :dsize] fs = [dsize, 28 * 28, 196, 28 * 28] # values from deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial X0 = patches lambda_ = 3e-3 rho = tf.constant(0.1, dtype=dtype) beta = 3 W0f = W_uniform(fs[2], fs[3]) def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = f(-1) n = len(fs) - 2 # helper to create variables with numpy or TF initial value init_dict = {} # {var_placeholder: init_value} vard = {} # {var: util.VarInfo} def init_var(val, name, trainable=False, noinit=False): if isinstance(val, tf.Tensor): collections = [] if noinit else None var = tf.Variable(val, name=name, collections=collections) else: val = np.array(val) assert u.is_numeric, "Unknown type" holder = tf.placeholder(dtype, shape=val.shape, name=name + "_holder") var = tf.Variable(holder, name=name, trainable=trainable) init_dict[holder] = val var_p = tf.placeholder(var.dtype, var.shape) var_setter = var.assign(var_p) vard[var] = u.VarInfo(var_setter, var_p) return var lr = init_var(0.2, "lr") if purely_linear: # need lower LR without sigmoids lr = init_var(.02, "lr") Wf = init_var(W0f, "Wf", True) Wf_copy = init_var(W0f, "Wf_copy", True) W = u.unflatten(Wf, fs[1:]) # perftodo: this creates transposes X = init_var(X0, "X") W.insert(0, X) def sigmoid(x): if not purely_linear: return tf.sigmoid(x) else: return tf.identity(x) def d_sigmoid(y): if not purely_linear: return y * (1 - y) else: return 1 def kl(x, y): return x * tf.log(x / y) + (1 - x) * tf.log((1 - x) / (1 - y)) def d_kl(x, y): return (1 - x) / (1 - y) - x / y # A[i] = activations needed to compute gradient of W[i] # A[n+1] = network output A = [None] * (n + 2) # A[0] is just for shape checks, assert fail on run # tf.assert always fails because of static assert # fail_node = tf.assert_equal(1, 0, message="too huge") fail_node = tf.Print(0, [0], "fail, this must never run") with tf.control_dependencies([fail_node]): A[0] = u.Identity(dsize, dtype=dtype) A[1] = W[0] for i in range(1, n + 1): A[i + 1] = sigmoid(W[i] @ A[i]) # reconstruction error and sparsity error err = (A[3] - A[1]) rho_hat = tf.reduce_sum(A[2], axis=1, keep_dims=True) / dsize # B[i] = backprops needed to compute gradient of W[i] # B2[i] = backprops from sampled labels needed for natural gradient B = [None] * (n + 1) B2 = [None] * (n + 1) B[n] = err * d_sigmoid(A[n + 1]) sampled_labels_live = tf.random_normal((f(n), f(-1)), dtype=dtype, seed=0) sampled_labels = init_var(sampled_labels_live, "sampled_labels", noinit=True) B2[n] = sampled_labels * d_sigmoid(A[n + 1]) for i in range(n - 1, -1, -1): backprop = t(W[i + 1]) @ B[i + 1] backprop2 = t(W[i + 1]) @ B2[i + 1] if i == 1 and not drop_sparsity: backprop += beta * d_kl(rho, rho_hat) backprop2 += beta * d_kl(rho, rho_hat) B[i] = backprop * d_sigmoid(A[i + 1]) B2[i] = backprop2 * d_sigmoid(A[i + 1]) # dW[i] = gradient of W[i] dW = [None] * (n + 1) pre_dW = [None] * (n + 1) # preconditioned dW pre_dW_stable = [None] * (n + 1) # preconditioned stable dW cov_A = [None] * (n + 1) # covariance of activations[i] cov_B2 = [None] * (n + 1) # covariance of synthetic backprops[i] vars_svd_A = [None] * (n + 1) vars_svd_B2 = [None] * (n + 1) for i in range(1, n + 1): cov_A[i] = init_var(A[i] @ t(A[i]) / dsize, "cov_A%d" % (i, )) cov_B2[i] = init_var(B2[i] @ t(B2[i]) / dsize, "cov_B2%d" % (i, )) vars_svd_A[i] = u.SvdWrapper(cov_A[i], "svd_A_%d" % (i, )) vars_svd_B2[i] = u.SvdWrapper(cov_B2[i], "svd_B2_%d" % (i, )) if use_tikhonov: whitened_A = u.regularized_inverse2(vars_svd_A[i], L=Lambda) @ A[i] else: whitened_A = u.pseudo_inverse2(vars_svd_A[i]) @ A[i] if use_tikhonov: whitened_B2 = u.regularized_inverse2(vars_svd_B2[i], L=Lambda) @ B[i] else: whitened_B2 = u.pseudo_inverse2(vars_svd_B2[i]) @ B[i] whitened_A_stable = u.pseudo_inverse_sqrt2(vars_svd_A[i]) @ A[i] whitened_B2_stable = u.pseudo_inverse_sqrt2(vars_svd_B2[i]) @ B[i] pre_dW[i] = (whitened_B2 @ t(whitened_A)) / dsize pre_dW_stable[i] = (whitened_B2_stable @ t(whitened_A_stable)) / dsize dW[i] = (B[i] @ t(A[i])) / dsize # Loss function reconstruction = u.L2(err) / (2 * dsize) sparsity = beta * tf.reduce_sum(kl(rho, rho_hat)) L2 = (lambda_ / 2) * (u.L2(W[1]) + u.L2(W[1])) loss = reconstruction if not drop_l2: loss = loss + L2 if not drop_sparsity: loss = loss + sparsity grad_live = u.flatten(dW[1:]) pre_grad_live = u.flatten(pre_dW[1:]) # fisher preconditioned gradient pre_grad_stable_live = u.flatten( pre_dW_stable[1:]) # sqrt fisher preconditioned grad grad = init_var(grad_live, "grad") pre_grad = init_var(pre_grad_live, "pre_grad") pre_grad_stable = init_var(pre_grad_stable_live, "pre_grad_stable") update_params_op = Wf.assign(Wf - lr * pre_grad).op update_params_stable_op = Wf.assign(Wf - lr * pre_grad_stable).op save_params_op = Wf_copy.assign(Wf).op pre_grad_dot_grad = tf.reduce_sum(pre_grad * grad) pre_grad_stable_dot_grad = tf.reduce_sum(pre_grad * grad) grad_norm = tf.reduce_sum(grad * grad) pre_grad_norm = u.L2(pre_grad) pre_grad_stable_norm = u.L2(pre_grad_stable) def dump_svd_info(step): """Dump singular values and gradient values in those coordinates.""" for i in range(1, n + 1): svd = vars_svd_A[i] s0, u0, v0 = sess.run([svd.s, svd.u, svd.v]) util.dump(s0, "A_%d_%d" % (i, step)) A0 = A[i].eval() At0 = v0.T @ A0 util.dump(A0 @ A0.T, "Acov_%d_%d" % (i, step)) util.dump(At0 @ At0.T, "Atcov_%d_%d" % (i, step)) util.dump(s0, "As_%d_%d" % (i, step)) for i in range(1, n + 1): svd = vars_svd_B2[i] s0, u0, v0 = sess.run([svd.s, svd.u, svd.v]) util.dump(s0, "B2_%d_%d" % (i, step)) B0 = B[i].eval() Bt0 = v0.T @ B0 util.dump(B0 @ B0.T, "Bcov_%d_%d" % (i, step)) util.dump(Bt0 @ Bt0.T, "Btcov_%d_%d" % (i, step)) util.dump(s0, "Bs_%d_%d" % (i, step)) def advance_batch(): sess.run(sampled_labels.initializer) # new labels for next call def update_covariances(): ops_A = [cov_A[i].initializer for i in range(1, n + 1)] ops_B2 = [cov_B2[i].initializer for i in range(1, n + 1)] sess.run(ops_A + ops_B2) def update_svds(): if whitening_mode > 1: vars_svd_A[2].update() if whitening_mode > 2: vars_svd_B2[2].update() if whitening_mode > 3: vars_svd_B2[1].update() def init_svds(): """Initialize our SVD to identity matrices.""" ops = [] for i in range(1, n + 1): ops.extend(vars_svd_A[i].init_ops) ops.extend(vars_svd_B2[i].init_ops) sess = tf.get_default_session() sess.run(ops) init_op = tf.global_variables_initializer() # tf.get_default_graph().finalize() from tensorflow.core.protobuf import rewriter_config_pb2 rewrite_options = rewriter_config_pb2.RewriterConfig( disable_model_pruning=True, constant_folding=rewriter_config_pb2.RewriterConfig.OFF, memory_optimization=rewriter_config_pb2.RewriterConfig.MANUAL) optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) graph_options = tf.GraphOptions(optimizer_options=optimizer_options, rewrite_options=rewrite_options) config = tf.ConfigProto(graph_options=graph_options) #sess = tf.Session(config=config) sess = tf.InteractiveSession(config=config) sess.run(Wf.initializer, feed_dict=init_dict) sess.run(X.initializer, feed_dict=init_dict) advance_batch() update_covariances() init_svds() sess.run(init_op, feed_dict=init_dict) # initialize everything else print("Running training.") u.reset_time() step_lengths = [] # keep track of learning rates losses = [] ratios = [] # actual loss decrease / expected decrease grad_norms = [] pre_grad_norms = [] # preconditioned grad norm squared pre_grad_stable_norms = [] # sqrt preconditioned grad norms squared target_delta_list = [] # predicted decrease linear approximation target_delta2_list = [] # predicted decrease quadratic appromation actual_delta_list = [] # actual decrease # adaptive line search parameters alpha = 0.3 # acceptable fraction of predicted decrease beta = 0.8 # how much to shrink when violation growth_rate = 1.05 # how much to grow when too conservative def update_cov_A(i): sess.run(cov_A[i].initializer) def update_cov_B2(i): sess.run(cov_B2[i].initializer) # only update whitening matrix of input activations in the beginning if whitening_mode > 0: vars_svd_A[1].update() # compute t(delta).H.delta/2 def hessian_quadratic(delta): # update_covariances() W = u.unflatten(delta, fs[1:]) W.insert(0, None) total = 0 for l in range(1, n + 1): decrement = tf.trace(t(W[l]) @ cov_B2[l] @ W[l] @ cov_A[l]) total += decrement return (total / 2).eval() # compute t(delta).H^-1.delta/2 def hessian_quadratic_inv(delta): # update_covariances() W = u.unflatten(delta, fs[1:]) W.insert(0, None) total = 0 for l in range(1, n + 1): invB2 = u.pseudo_inverse2(vars_svd_B2[l]) invA = u.pseudo_inverse2(vars_svd_A[l]) decrement = tf.trace(t(W[l]) @ invB2 @ W[l] @ invA) total += decrement return (total / 2).eval() # do line search, dump values as csv def line_search(initial_value, direction, step, num_steps): saved_val = tf.Variable(Wf) sess.run(saved_val.initializer) pl = tf.placeholder(dtype, shape=(), name="linesearch_p") assign_op = Wf.assign(initial_value - direction * step * pl) vals = [] for i in range(num_steps): sess.run(assign_op, feed_dict={pl: i}) vals.append(loss.eval()) sess.run(Wf.assign(saved_val)) # restore original value return vals for step in range(num_steps): update_covariances() if step % whiten_every_n_steps == 0: update_svds() sess.run(grad.initializer) sess.run(pre_grad.initializer) lr0, loss0 = sess.run([lr, loss]) save_params_op.run() # regular inverse becomes unstable when grad norm exceeds 1 stabilized_mode = grad_norm.eval() < 1 if stabilized_mode and not use_tikhonov: update_params_stable_op.run() else: update_params_op.run() loss1 = loss.eval() advance_batch() # line search stuff target_slope = (-pre_grad_dot_grad.eval() if stabilized_mode else -pre_grad_stable_dot_grad.eval()) target_delta = lr0 * target_slope target_delta_list.append(target_delta) # second order prediction of target delta # TODO: the sign is wrong, debug this # https://www.wolframcloud.com/objects/8f287f2f-ceb7-42f7-a599-1c03fda18f28 if local_quadratics: x0 = Wf_copy.eval() x_opt = x0 - pre_grad.eval() # computes t(x)@H^-1 @(x)/2 y_opt = loss0 - hessian_quadratic_inv(grad) # computes t(x)@H @(x)/2 y_expected = hessian_quadratic(Wf - x_opt) + y_opt target_delta2 = y_expected - loss0 target_delta2_list.append(target_delta2) actual_delta = loss1 - loss0 actual_slope = actual_delta / lr0 slope_ratio = actual_slope / target_slope # between 0 and 1.01 actual_delta_list.append(actual_delta) if do_line_search: vals1 = line_search(Wf_copy, pre_grad, lr / 100, 40) vals2 = line_search(Wf_copy, grad, lr / 100, 40) u.dump(vals1, "line1-%d" % (i, )) u.dump(vals2, "line2-%d" % (i, )) losses.append(loss0) step_lengths.append(lr0) ratios.append(slope_ratio) grad_norms.append(grad_norm.eval()) pre_grad_norms.append(pre_grad_norm.eval()) pre_grad_stable_norms.append(pre_grad_stable_norm.eval()) if step % report_frequency == 0: print( "Step %d loss %.2f, target decrease %.3f, actual decrease, %.3f ratio %.2f grad norm: %.2f pregrad norm: %.2f" % (step, loss0, target_delta, actual_delta, slope_ratio, grad_norm.eval(), pre_grad_norm.eval())) if adaptive_step_frequency and adaptive_step and step > adaptive_step_burn_in: # shrink if wrong prediction, don't shrink if prediction is tiny if slope_ratio < alpha and abs( target_delta) > 1e-6 and adaptive_step: print("%.2f %.2f %.2f" % (loss0, loss1, slope_ratio)) print( "Slope optimality %.2f, shrinking learning rate to %.2f" % ( slope_ratio, lr0 * beta, )) sess.run(vard[lr].setter, feed_dict={vard[lr].p: lr0 * beta}) # grow learning rate, slope_ratio .99 worked best for gradient elif step > 0 and i % 50 == 0 and slope_ratio > 0.90 and adaptive_step: print("%.2f %.2f %.2f" % (loss0, loss1, slope_ratio)) print("Growing learning rate to %.2f" % (lr0 * growth_rate)) sess.run(vard[lr].setter, feed_dict={vard[lr].p: lr0 * growth_rate}) u.record_time() # check against expected loss if 'Apple' in sys.version: pass # u.dump(losses, "kfac_small_final_mac.csv") targets = np.loadtxt("data/kfac_small_final_mac.csv", delimiter=",") else: pass # u.dump(losses, "kfac_small_final_linux.csv") targets = np.loadtxt("data/kfac_small_final_linux.csv", delimiter=",") u.check_equal(targets, losses[:len(targets)], rtol=1e-1) u.summarize_time() print("Test passed")