def test_with_pandas_df(self): x, y = make_regression(random_state=561) df = pd.DataFrame(x) df['y'] = y m = ElasticNet(n_folds=3, random_state=123) m = m.fit(df.drop(['y'], axis=1), df.y) sanity_check_regression(m, x)
def test_with_pandas_df(self): x, y = make_regression(random_state=561) df = pd.DataFrame(x) df['y'] = y m = ElasticNet(n_splits=3, random_state=123) m = m.fit(df.drop(['y'], axis=1), df.y) sanity_check_regression(m, x)
def test_n_splits(self): x, y = self.inputs[0] for n in self.n_splits: m = ElasticNet(n_splits=n, random_state=6601) if n > 0 and n < 3: with self.assertRaisesRegexp(ValueError, "n_splits must be at least 3"): m = m.fit(x, y) else: m = m.fit(x, y) sanity_check_regression(m, x)
def test_with_defaults(self): m = ElasticNet(random_state=2821) for x, y in self.inputs: m = m.fit(x, y) sanity_check_regression(m, x) # check selection of lambda_best self.assertTrue(m.lambda_best_inx_ <= m.lambda_max_inx_) # check full path predict p = m.predict(x, lamb=m.lambda_path_) self.assertEqual(p.shape[-1], m.lambda_path_.size)