def main():

    args = parse_arg()
    tf.reset_default_graph()
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        env = gym.make('FeedingCooperation-v0')
        set_global_seeds(int(args['random_seed']))
        robot_actor_critic_entropy = Robot_Actor_Critic(
            sess, float(args['actor_lr']), float(args['critic_lr']),
            float(args['value_lr']), float(args['reg_factor']),
            float(args['gamma']), float(args['tau']),
            float(args['value_weight']), float(args['critic_weight']),
            float(args['actor_weight']), float(args['all_lr']),
            float(args['max_steps']), float(args['minibatch_size']))
        human_actor_critic_entropy = Human_Actor_Critic(
            sess, float(args['actor_lr']), float(args['critic_lr']),
            float(args['value_lr']), float(args['reg_factor']),
            float(args['gamma']), float(args['tau']),
            float(args['value_weight']), float(args['critic_weight']),
            float(args['actor_weight']), float(args['all_lr']),
            float(args['max_steps']), float(args['minibatch_size']))
        train(sess, env, args, robot_actor_critic_entropy,
              human_actor_critic_entropy)
        savepath = osp.join("my_model_sac_cop/", 'final')
        os.makedirs(savepath, exist_ok=True)
        savepath = osp.join(savepath, 'sacmodel')
        save_state(savepath)
예제 #2
0
def make_vec_env(num_env, seed,copeoperation=False):
    current_dir=os.getcwd()
    logger_dir=osp.join(current_dir,
             datetime.datetime.now().strftime("recoder-%Y-%m-%d-%H-%M-%S-%f"))
    os.makedirs(logger_dir, exist_ok=True)
    assert isinstance(logger_dir, str)
    def make_thunk(rank,cops=False):
        return lambda: create_env(
            subrank=rank,
            logger_dir=logger_dir,cop=cops)
    set_global_seeds(seed)
    return SubprocVecEnv([make_thunk(i,cops=copeoperation) for i in range(num_env)])
예제 #3
0
def main(args):
    # arguments
    arg_parser = common_arg_parser()
    args, unknown_args = arg_parser.parse_known_args(args)
    args.model = "_".join([args.agent, args.FA, str(args.T)])
    # initialization
    set_global_seeds(args.seed)
    # os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_no)
    # logger
    logger.configure("./log" + args.data_path.split("/")[-2] + "/" + "_".join([
        args.model,
        datetime.now().strftime("%Y%m%d_%H%M%S"),
        args.data_path.split("/")[-2],
        str(args.learning_rate),
        str(args.T),
        str(args.ST),
        str(args.gamma)
    ]))
    logger.log("Training Model: " + args.model)
    # environments
    envs = get_objects(all_envs)
    env = envs[args.environment](args)
    # ipdb.set_trace()
    # policy network
    args.user_num = env.user_num
    args.item_num = env.item_num
    args.utype_num = env.utype_num
    # ipdb.set_trace()
    args.saved_path = os.path.join(
        os.path.abspath("./"), "saved_path_" + args.data_path.split("/")[-2] +
        "_" + str(args.FA) + "_" + str(args.learning_rate) + "_" +
        str(args.agent) + "_" + str(args.seed))

    nets = get_objects(all_FA)
    fa = nets[args.FA].create_model_without_distributed(args)

    logger.log("Hype-Parameters: " + str(args))
    # # agents
    agents = get_objects(all_agents)
    agents[args.agent](env, fa, args).train()
예제 #4
0
def make_vec_env(env_id,
                 env_type,
                 num_env,
                 seed,
                 wrapper_kwargs=None,
                 start_index=0,
                 reward_scale=1.0,
                 flatten_dict_observations=True,
                 gamestate=None):
    """
    Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo.
    """
    wrapper_kwargs = wrapper_kwargs or {}
    mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
    seed = seed + 10000 * mpi_rank if seed is not None else None
    logger_dir = logger.get_dir()

    def make_thunk(rank):
        return lambda: make_env(env_id=env_id,
                                env_type=env_type,
                                mpi_rank=mpi_rank,
                                subrank=rank,
                                seed=seed,
                                reward_scale=reward_scale,
                                gamestate=gamestate,
                                flatten_dict_observations=
                                flatten_dict_observations,
                                wrapper_kwargs=wrapper_kwargs,
                                logger_dir=logger_dir)

    set_global_seeds(seed)
    if num_env > 1:
        return SubprocVecEnv(
            [make_thunk(i + start_index) for i in range(num_env)])
    else:
        return DummyVecEnv([make_thunk(start_index)])
import tensorflow as tf
import numpy as np
import gym
import my_envs
from util import set_global_seeds
import os
import time

set_global_seeds(1001)

with tf.Session() as sess:
    directory = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                             'my_model')
    file_pos = os.path.join(directory, '00350')
    meta_pos = os.path.join(file_pos, 'ppomodel.meta')
    saver = tf.train.import_meta_graph(meta_pos)
    saver.restore(sess, tf.train.latest_checkpoint(file_pos))
    action_op = sess.graph.get_tensor_by_name('ppo_model/add_1:0')
    input = sess.graph.get_tensor_by_name('ppo_model/ob:0')
    num_env = action_op.shape[0]

    env = gym.make('Feeding-v0')
    env.play_show()
    state = env.reset()
    ep_reward = 0
    total_step = 0
    while True:
        state = np.expand_dims(state, axis=0)
        state = np.repeat(state, num_env, axis=0)
        action = sess.run(action_op, feed_dict={input: state})
        action = action[0, :]
예제 #6
0
파일: deepq.py 프로젝트: yusuf000/thesisRL
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          save_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    model = deepq.DEEPQ(q_func=q_func,
                        observation_shape=env.observation_space.shape,
                        num_actions=env.action_space.n,
                        lr=lr,
                        grad_norm_clipping=10,
                        gamma=gamma,
                        param_noise=param_noise)

    if load_path is not None:
        load_path = osp.expanduser(load_path)
        ckpt = tf.train.Checkpoint(model=model)
        manager = tf.train.CheckpointManager(ckpt, load_path, max_to_keep=None)
        ckpt.restore(manager.latest_checkpoint)
        print("Restoring from {}".format(manager.latest_checkpoint))
        return model

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    model.update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    # always mimic the vectorized env
    if not isinstance(env, VecEnv):
        obs = np.expand_dims(np.array(obs), axis=0)
    reset = True

    for t in range(total_timesteps):
        if callback is not None:
            if callback(locals(), globals()):
                break
        kwargs = {}
        if not param_noise:
            update_eps = tf.constant(exploration.value(t))
            update_param_noise_threshold = 0.
        else:
            update_eps = tf.constant(0.)
            # Compute the threshold such that the KL divergence between perturbed and non-perturbed
            # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
            # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
            # for detailed explanation.
            update_param_noise_threshold = -np.log(1. - exploration.value(t) +
                                                   exploration.value(t) /
                                                   float(env.action_space.n))
            kwargs['reset'] = reset
            kwargs[
                'update_param_noise_threshold'] = update_param_noise_threshold
            kwargs['update_param_noise_scale'] = True
        action, _, _, _ = model.step(tf.constant(obs),
                                     update_eps=update_eps,
                                     **kwargs)
        action = action[0].numpy()
        reset = False
        new_obs, rew, done, _ = env.step(action)
        # Store transition in the replay buffer.
        if not isinstance(env, VecEnv):
            new_obs = np.expand_dims(np.array(new_obs), axis=0)
            replay_buffer.add(obs[0], action, rew, new_obs[0], float(done))
        else:
            replay_buffer.add(obs[0], action, rew[0], new_obs[0],
                              float(done[0]))
        # # Store transition in the replay buffer.
        # replay_buffer.add(obs, action, rew, new_obs, float(done))
        obs = new_obs

        episode_rewards[-1] += rew
        if done:
            obs = env.reset()
            if not isinstance(env, VecEnv):
                obs = np.expand_dims(np.array(obs), axis=0)
            episode_rewards.append(0.0)
            reset = True

        if t > learning_starts and t % train_freq == 0:
            # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
            if prioritized_replay:
                experience = replay_buffer.sample(batch_size,
                                                  beta=beta_schedule.value(t))
                (obses_t, actions, rewards, obses_tp1, dones, weights,
                 batch_idxes) = experience
            else:
                obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                    batch_size)
                weights, batch_idxes = np.ones_like(rewards), None
            obses_t, obses_tp1 = tf.constant(obses_t), tf.constant(obses_tp1)
            actions, rewards, dones = tf.constant(actions), tf.constant(
                rewards), tf.constant(dones)
            weights = tf.constant(weights)
            td_errors = model.train(obses_t, actions, rewards, obses_tp1,
                                    dones, weights)
            if prioritized_replay:
                new_priorities = np.abs(td_errors) + prioritized_replay_eps
                replay_buffer.update_priorities(batch_idxes, new_priorities)

        if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            model.update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if done and print_freq is not None and len(
                episode_rewards) % print_freq == 0:
            logger.record_tabular("steps", t)
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
            logger.record_tabular("% time spent exploring",
                                  int(100 * exploration.value(t)))
            logger.dump_tabular()

    if save_path is not None:
        save_path = osp.expanduser(save_path)
        ckpt = tf.train.Checkpoint(model=model)
        manager = tf.train.CheckpointManager(ckpt, save_path, max_to_keep=None)
        manager.save()

    return model
def learn(env,
          total_timesteps,
          seed=None,
          nsteps=1024,
          ent_coef=0.01,
          lr=0.01,
          vf_coef=0.5,
          p_coef=1.0,
          max_grad_norm=None,
          gamma=0.99,
          lam=0.95,
          nminibatches=15,
          noptepochs=4,
          cliprange=0.2,
          save_interval=100,
          copeoperation=False,
          human_ent_coef=0.01,
          human_vf_coef=0.5,
          human_p_coef=1.0):

    set_global_seeds(seed)
    sess = get_session()
    global_summary = tf.summary.FileWriter(
        'summaries/' + 'feeding' +
        datetime.datetime.now().strftime('%d-%m-%y%H%M'), sess.graph)

    if isinstance(lr, float): lr = constfn(lr)
    else: assert callable(lr)
    if isinstance(cliprange, float): cliprange = constfn(cliprange)
    else: assert callable(cliprange)

    # Get the nb of env
    nenvs = env.num_envs
    # Calculate the batch_size
    nbatch = nenvs * nsteps
    nbatch_train = nbatch // nminibatches
    if copeoperation == True:
        human_model = Model(env=env,
                            nbatch_act=nenvs,
                            nbatch_train=nbatch_train,
                            ent_coef=human_ent_coef,
                            vf_coef=human_vf_coef,
                            p_coef=human_p_coef,
                            max_grad_norm=max_grad_norm,
                            human=True,
                            robot=False)
        robot_model = Model(env=env,
                            nbatch_act=nenvs,
                            nbatch_train=nbatch_train,
                            ent_coef=ent_coef,
                            vf_coef=vf_coef,
                            p_coef=p_coef,
                            max_grad_norm=max_grad_norm,
                            human=False,
                            robot=True)

    if copeoperation == False:
        model = Model(env=env,
                      nbatch_act=nenvs,
                      nbatch_train=nbatch_train,
                      ent_coef=ent_coef,
                      vf_coef=vf_coef,
                      p_coef=p_coef,
                      max_grad_norm=max_grad_norm)
    initialize()

    # Instantiate the runner object
    if copeoperation == True:
        runner = Runner(env=env,
                        model=None,
                        nsteps=nsteps,
                        gamma=gamma,
                        lam=lam,
                        human_model=human_model,
                        robot_model=robot_model)
    if copeoperation == False:
        runner = Runner(env=env,
                        model=model,
                        nsteps=nsteps,
                        gamma=gamma,
                        lam=lam)

    epinfobuf = deque(maxlen=10)  #recent 10 episode
    pbar = tqdm(total=total_timesteps, dynamic_ncols=True)

    tfirststart = time.perf_counter()

    nupdates = total_timesteps // nbatch
    for update in range(1, nupdates + 1):
        assert nbatch % nminibatches == 0
        # Start timer
        frac = 1.0 - (update - 1.0) / nupdates
        # Calculate the learning rate
        lrnow = lr(frac)
        # Calculate the cliprange
        cliprangenow = cliprange(frac)

        # Get minibatch
        if copeoperation == False:
            obs, returns, masks, actions, values, neglogpacs, epinfos = runner.run(
            )
        if copeoperation == True:
            obs, human_returns, robot_returns, masks, human_actions, robot_actions, human_values, robot_values, human_neglogpacs, robot_neglogpacs, epinfos = runner.coop_run(
            )
        epinfobuf.extend(epinfos)
        mblossvals = []
        human_mblossvals = []
        robot_mblossvals = []
        inds = np.arange(nbatch)
        for _ in range(noptepochs):
            # Randomize the indexes
            np.random.shuffle(inds)
            for start in range(0, nbatch, nbatch_train):
                end = start + nbatch_train
                mbinds = inds[start:end]
                if copeoperation == True:
                    human_slices = (arr[mbinds]
                                    for arr in (obs[:, 24:], human_returns,
                                                human_actions, human_values,
                                                human_neglogpacs))
                    robot_slices = (arr[mbinds]
                                    for arr in (obs[:, :24], robot_returns,
                                                robot_actions, robot_values,
                                                robot_neglogpacs))
                    human_mblossvals.append(
                        human_model.train(lrnow, cliprangenow, *human_slices))
                    robot_mblossvals.append(
                        robot_model.train(lrnow, cliprangenow, *robot_slices))
                if copeoperation == False:
                    slices = (arr[mbinds] for arr in (obs, returns, actions,
                                                      values, neglogpacs))
                    mblossvals.append(model.train(lrnow, cliprangenow,
                                                  *slices))  #None
        # Feedforward --> get losses --> update
        if copeoperation == True:
            human_lossvals = np.mean(human_mblossvals, axis=0)
            robot_lossvals = np.mean(robot_mblossvals, axis=0)
        if copeoperation == False:
            lossvals = np.mean(mblossvals, axis=0)
        summary = tf.Summary()
        if copeoperation == True:
            human_ev = explained_variance(human_values, human_returns)
            robot_ev = explained_variance(robot_values, robot_returns)
        if copeoperation == False:
            ev = explained_variance(values, returns)
        performance_r = np.mean([epinfo['r'] for epinfo in epinfobuf])
        performance_len = np.mean([epinfo['l'] for epinfo in epinfobuf])
        success_time = np.mean(
            [epinfo['success_time'] for epinfo in epinfobuf])
        fall_time = np.mean([epinfo['fall_time'] for epinfo in epinfobuf])
        summary.value.add(tag='Perf/Reward', simple_value=performance_r)
        summary.value.add(tag='Perf/episode_len', simple_value=performance_len)
        summary.value.add(tag='Perf/success_time', simple_value=success_time)
        summary.value.add(tag='Perf/fall_time', simple_value=fall_time)
        if copeoperation == True:
            summary.value.add(tag='Perf/human_explained_variance',
                              simple_value=float(human_ev))
            summary.value.add(tag='Perf/robot_explained_variance',
                              simple_value=float(robot_ev))
        if copeoperation == False:
            summary.value.add(tag='Perf/explained_variance',
                              simple_value=float(ev))
        if copeoperation == True:
            for (human_lossval, human_lossname) in zip(human_lossvals,
                                                       human_model.loss_names):
                if human_lossname == 'grad_norm':
                    summary.value.add(tag='grad/' + human_lossname,
                                      simple_value=human_lossval)
                else:
                    summary.value.add(tag='human_loss/' + human_lossname,
                                      simple_value=human_lossval)
            for (robot_lossval, robot_lossname) in zip(robot_lossvals,
                                                       robot_model.loss_names):
                if robot_lossname == 'grad_norm':
                    summary.value.add(tag='grad/' + robot_lossname,
                                      simple_value=robot_lossval)
                else:
                    summary.value.add(tag='robot_loss/' + robot_lossname,
                                      simple_value=robot_lossval)
        if copeoperation == False:
            for (lossval, lossname) in zip(lossvals, model.loss_names):
                if lossname == 'grad_norm':
                    summary.value.add(tag='grad/' + lossname,
                                      simple_value=lossval)
                else:
                    summary.value.add(tag='loss/' + lossname,
                                      simple_value=lossval)

        global_summary.add_summary(summary, int(update * nbatch))
        global_summary.flush()
        print('finish one update')
        if update % 10 == 0:
            msg = 'step: {},episode reward: {},episode len: {},success_time: {},fall_time: {}'
            pbar.update(update * nbatch)
            pbar.set_description(
                msg.format(update * nbatch, performance_r, performance_len,
                           success_time, fall_time))

        if update % save_interval == 0:
            tnow = time.perf_counter()
            print('consume time', tnow - tfirststart)
            if copeoperation == True:
                savepath = osp.join("my_model_cop/", '%.5i' % update)
            if copeoperation == False:
                savepath = osp.join("my_model/", '%.5i' % update)
            os.makedirs(savepath, exist_ok=True)
            savepath = osp.join(savepath, 'ppomodel')
            print('Saving to', savepath)
            save_state(savepath)
    pbar.close()

    return model
예제 #8
0
def main():
    config = Config()
    set_global_seeds(config.seed)
    env = gym.make(config.env_name)
    env = CartPoleWrapper(env)
    # with tf.device("/gpu:0"):  # gpuを使用する場合
    with tf.device("/cpu:0"):
        ppo = PPO(num_actions=env.action_space.n,
                  input_shape=env.observation_space.shape,
                  config=config)
    num_episodes = 0
    episode_rewards = deque([0] * 100, maxlen=100)
    memory = Memory(env.observation_space.shape, config)
    reward_sum = 0
    obs = env.reset()
    for t in tqdm(range(config.num_update)):
        # ===== get samples =====
        for _ in range(config.num_step):
            policy, value = ppo.step(obs[np.newaxis, :])
            policy = policy.numpy()
            action = np.random.choice(2, p=policy)
            next_obs, reward, done, _ = env.step(action)
            memory.add(obs, action, reward, done, value, policy[action])
            obs = next_obs
            reward_sum += reward
            if done:
                episode_rewards.append(env.steps)
                num_episodes += 1
                reward_sum = 0
                obs = env.reset()
        _, last_value = ppo.step(obs[np.newaxis, :])
        memory.add(None, None, None, None, last_value, None)

        # ===== make mini-batch and update parameters =====
        memory.compute_gae()
        for _ in range(config.num_epoch):
            idxes = [idx for idx in range(config.num_step)]
            random.shuffle(idxes)
            for start in range(0, len(memory), config.batch_size):
                minibatch_indexes = idxes[start:start + config.batch_size]
                batch_obs, batch_act, batch_adv, batch_sum, batch_pi_old = memory.sample(
                    minibatch_indexes)
                loss, policy_loss, value_loss, entropy_loss, policy, kl, frac = ppo.train(
                    batch_obs, batch_act, batch_pi_old, batch_adv, batch_sum)
        memory.reset()
        if t % config.log_step == 0:
            logger.info("\nnum episodes: {}".format(num_episodes))
            logger.info("loss: {}".format(loss.numpy()))
            logger.info("policy loss: {}".format(policy_loss.numpy()))
            logger.info("value loss: {}".format(value_loss.numpy()))
            logger.info("entropy loss: {}".format(entropy_loss.numpy()))
            logger.info("kl: {}".format(kl.numpy()))
            logger.info("frac: {}".format(frac.numpy()))
            logger.info("mean 100 episode reward: {}".format(
                np.mean(episode_rewards)))
            logger.info("max 100 episode reward: {}".format(
                np.max(episode_rewards)))
            logger.info("min 100 episode reward: {}".format(
                np.min(episode_rewards)))

    # ===== finish training =====
    if config.play:
        obs = env.reset()
        while True:
            action, _ = ppo.step(obs[np.newaxis, :])
            action = int(action.numpy()[0])
            obs, _, done, _ = env.step(action)
            env.render()
            if done:
                obs = env.reset()