parser.add_argument('-g', '--gray', dest='gray', action='store_true') parser.add_argument('-nm', '--norm', dest='normalize', action='store_true') parser.add_argument('-e', '--epochs', dest='epochs', type=int, default=50) parser.add_argument('-di', '--dice', dest='dice', action='store_true') parser.add_argument('-t', '--test', dest='test', action='store_true') parser.add_argument('-f', '--flip', dest='flip', action='store_true') parser.add_argument('-de', '--denoise', dest='denoise', action='store_true') return parser.parse_args() args = get_args() u.set_gray(args.gray) u.set_cs(args.cs) # Load the data and add an axis to the end of y # so that it is three-dimensional X, y = u.ips() y = np.expand_dims(y, axis=3) if args.test: X, y = X[:100], y[:100] if args.jcs and X.shape[-1] == 2: X = np.expand_dims(X[:, :, :, 1], axis=3) if args.flip: X = np.append(X, [np.fliplr(x) for x in X], axis=0)
with open(join('models', args.ae_name, 'model.json')) as f: json = f.read() ae = model_from_json(json) ae.load_weights(join('models', args.ae_name, 'model.h5')) last_layer = ae.layers[-1] while not last_layer.name == "conv2d_10": ae.layers.pop() last_layer = ae.layers[-1] for layer in ae.layers: layer.trainable = args.trainable num_chan = ae.layers[0].input_shape[-1] if num_chan == 3: u.set_gray(False) u.set_cs(False) elif num_chan == 2: u.set_cs(True) else: u.set_cs(False) u.set_gray(True) # Load the data and add an axis to the end of y # so that it is three-dimensional X, y = u.ips() y = np.expand_dims(y, axis=3) name = args.name # name of the model dropout = args.dropout # dropout to use in the U-Net
import util as u import numpy as np u.set_gray(True) for _ in range(5): img = (u.rand_img() * 255).astype(np.uint8) sharpened = u.preprocess(img, sharpen=False, contrast=True) fully_processed = u.preprocess(img, sharpen=True, contrast=True) u.disp_imp(img / 255., sharpened / 255., fully_processed / 255.)
'--thresh', dest='threshold', type=float, default=-1.0) args = parser.parse_args() name = args.name with open(join('models', name, 'model.json')) as f: json = f.read() model = model_from_json(json) model.load_weights(join('models', name, 'model.h5')) num_chan = model.layers[0].input_shape[-1] if num_chan == 3: u.set_gray(False) u.set_cs(False) elif num_chan == 2: u.set_cs(True) else: u.set_cs(False) ids = u.img_ids(train=True) ids = np.random.choice(ids, args.num, replace=False) X, y = u.ips(for_ids=ids) if len(X.shape) == 3: X = np.expand_dims(X, axis=3) u.unsilence() print(X.shape, y.shape)