def run_test_score(model, cfg): print("----run test score---", cfg['model']) model.eval() with torch.no_grad(): test_loader = DataLoader(cfg['test'], batch_size=cfg['batch'], shuffle=False, num_workers=cfg['nworker'], collate_fn=cfg['collate']) np_label = [] np_pd = [] np_score = [] np_sgene = [] for i_batch, sample_batched in enumerate(test_loader): sgene, predict, gt = cfg['instance'](model, sample_batched) test_pd = util.threshold_tensor_batch(predict) np_pd.append(test_pd.data.cpu().numpy()) np_sgene.extend(sgene) np_label.append(gt.data.cpu().numpy()) np_score.append(predict.data.cpu().numpy()) np_label = np.concatenate(np_label) np_pd = np.concatenate(np_pd) np_score = np.concatenate(np_score) return np_score, np_label
def run_test(model, cfg): print("----run test---", cfg['model'], cfg['step']) model.eval() with torch.no_grad(): test_loader = DataLoader(cfg['test'], batch_size=cfg['batch'], shuffle=False, num_workers=cfg['nworker'], collate_fn=cfg['collate']) np_label = [] np_pd = [] np_score = [] np_sgene = [] for i_batch, sample_batched in enumerate(test_loader): sgene, img, label = sample_batched inputs = torch.from_numpy(img).type(torch.cuda.FloatTensor) predict = model(inputs) test_pd = util.threshold_tensor_batch(predict) np_pd.append(test_pd.data.cpu().numpy()) np_sgene.extend(sgene) np_label.append(label) np_score.append(predict.data.cpu().numpy()) np_label = np.concatenate(np_label) np_pd = np.concatenate(np_pd) np_score = np.concatenate(np_score) util.torch_metrics(np_label, np_pd, cfg['writer'], cfg['step'], mode='test', score=np_score) np_target = [' '.join([str(x) for x in np.where(item)[0]]) for item in np_pd] df = pd.DataFrame({'Gene': np_sgene, 'Predicted': np_target}) result = os.path.join(cfg['model_dir'], "%s_%d.csv" % (cfg['model'], cfg['step'])) df.to_csv(result, header=True, sep=',', index=False)
def run_val(model, cfg): print("----run val---", cfg['model'], cfg['step']) model.eval() with torch.no_grad(): val_loader = DataLoader(cfg['val'], batch_size=cfg['batch'], shuffle=False, num_workers=cfg['nworker'], collate_fn=cfg['collate']) criterion = cfg['criterion'] np_label = [] np_pd = [] np_score = [] tot_loss = 0.0 for i_batch, sample_batched in enumerate(val_loader): sgene, predict, gt = cfg['instance'](model, sample_batched) loss = criterion(predict, gt) tot_loss += loss val_pd = util.threshold_tensor_batch(predict) np_pd.append(val_pd.data.cpu().numpy()) np_score.append(predict.data.cpu().numpy()) np_label.append(gt.data.cpu().numpy()) np_label = np.concatenate(np_label) np_pd = np.concatenate(np_pd) np_score = np.concatenate(np_score) tot_loss = tot_loss / len(val_loader) cfg['writer'].add_scalar("val loss", tot_loss.item(), cfg['step']) lab_f1_macro = util.torch_metrics(np_label, np_pd, cfg['writer'], cfg['step'], score=np_score) return tot_loss.item(), lab_f1_macro
def run_train(model, cfg): train_loader = DataLoader(cfg['train'], batch_size=cfg['batch'], shuffle=True, num_workers=cfg['nworker'], collate_fn=cfg['collate']) model_pth = os.path.join(cfg['model_dir'], "model.pth") writer = tensorboardX.SummaryWriter(cfg['model_dir']) cfg['writer'] = writer criterion = cfg['criterion'] optimizer = torch.optim.Adam(model.parameters(), lr=cfg['lr'], weight_decay=cfg['decay']) if cfg['scheduler']: scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, 'max', factor=cfg['factor'], patience=cfg['patience']) step = cfg['step'] * len(train_loader) min_loss = 1e8 max_f1 = 0.0 for e in range(cfg['step'], cfg['epochs']): print("----run train---", cfg['model'], e) model.train() st = time.time() cfg['step'] = e np_label = [] np_pd = [] np_score = [] for i_batch, sample_batched in tqdm(enumerate(train_loader), total=len(train_loader)): sgene, predict, gt = cfg['instance'](model, sample_batched) loss = criterion(predict, gt) loss.backward() optimizer.step() writer.add_scalar("loss", loss, step) step += 1 val_pd = util.threshold_tensor_batch(predict) np_pd.append(val_pd.data.cpu().numpy()) np_score.append(predict.data.cpu().numpy()) np_label.append(gt.data.cpu().numpy()) np_label = np.concatenate(np_label) np_pd = np.concatenate(np_pd) np_score = np.concatenate(np_score) et = time.time() writer.add_scalar("train time", et - st, e) util.torch_metrics(np_label, np_pd, cfg['writer'], cfg['step'], mode='train', score=np_score) val_loss, lab_f1_macro = run_val(model, cfg) print("val loss:", val_loss, "\tf1:", lab_f1_macro) for g in optimizer.param_groups: writer.add_scalar("lr", g['lr'], e) if cfg['scheduler'] and g['lr'] > 1e-6: scheduler.step(lab_f1_macro) break # if val_loss > 2 * min_loss: # print("early stopping at %d" % e) # break # run_test(model, cfg) if min_loss > val_loss or lab_f1_macro > max_f1: if min_loss > val_loss: min_loss = val_loss print("----save best epoch:%d, loss:%f---" % (e, val_loss)) if lab_f1_macro > max_f1: max_f1 = lab_f1_macro print("----save best epoch:%d, f1:%f---" % (e, max_f1)) # torch.save(model.state_dict(), model_pth) torch.save({'epoch': e, 'model': model.state_dict()}, model_pth) run_test(model, cfg)
def run_train(model, cfg): model_pth = os.path.join(cfg['model_dir'], "model.pth") writer = tensorboardX.SummaryWriter(cfg['model_dir']) cfg['writer'] = writer criterion = cfg['criterion'] optimizer = torch.optim.Adam(model.parameters(), lr=cfg['lr'], weight_decay=cfg['decay']) if cfg['scheduler']: scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, 'max', factor=cfg['factor'], patience=cfg['patience']) nsample = len(cfg['train']) sample_weights = np.ones(nsample, dtype='float') # origin bce loss sample_loss = np.zeros(nsample, dtype='float') step = cfg['step'] * len(cfg['train']) min_loss = 1e8 max_f1 = 0.0 for e in range(cfg['step'], cfg['epochs']): print("----run train---", cfg['model'], e) model.train() st = time.time() cfg['step'] = e np_label = [] np_pd = [] np_score = [] shuffle_idx = np.array(range(len(cfg['train']))) np.random.shuffle(shuffle_idx) train_dataset = Subset(cfg['train'], shuffle_idx) train_loader = DataLoader(train_dataset, batch_size=cfg['batch'], shuffle=False, num_workers=cfg['nworker'], collate_fn=cfg['collate']) for i_batch, sample_batched in tqdm(enumerate(train_loader), total=len(train_loader)): sgene, predict, gt = cfg['instance'](model, sample_batched) st_idx = i_batch * cfg['batch'] end_idx = st_idx + len(sgene) batch_idx = shuffle_idx[st_idx:end_idx] # orig_loss = F.binary_cross_entropy(predict, gt, reduction='none') orig_loss = criterion(predict, gt) orig_loss = torch.sum(orig_loss, dim=1) / predict.shape[-1] weight_loss = torch.from_numpy(sample_weights[batch_idx]).type( torch.cuda.FloatTensor) * orig_loss loss = torch.mean(weight_loss) writer.add_scalar("loss_weight", loss, step) writer.add_scalar("loss_orig", torch.mean(orig_loss), step) # loss = criterion(predict, gt) loss.backward() optimizer.step() # writer.add_scalar("loss", loss, step) step += 1 val_pd = util.threshold_tensor_batch(predict) np_pd.append(val_pd.data.cpu().numpy()) np_score.append(predict.data.cpu().numpy()) np_label.append(gt.data.cpu().numpy()) sample_loss[batch_idx] = orig_loss.clone().cpu().data.numpy() exp_loss = np.exp(sample_loss) exp_tot = np.sum(exp_loss) sample_weights = nsample * (exp_loss / exp_tot) sample_loss = np.zeros(nsample) np_label = np.concatenate(np_label) np_pd = np.concatenate(np_pd) np_score = np.concatenate(np_score) et = time.time() writer.add_scalar("train time", et - st, e) util.torch_metrics(np_label, np_pd, cfg['writer'], cfg['step'], mode='train', score=np_score) val_loss, lab_f1_macro = run_val(model, cfg) print("val loss:", val_loss, "\tf1:", lab_f1_macro) for g in optimizer.param_groups: writer.add_scalar("lr", g['lr'], e) if cfg['scheduler'] and g['lr'] > 1e-5: scheduler.step(lab_f1_macro) break # if val_loss > 2 * min_loss: # print("early stopping at %d" % e) # break # run_test(model, cfg) if min_loss > val_loss or lab_f1_macro > max_f1: if min_loss > val_loss: min_loss = val_loss print("----save best epoch:%d, loss:%f---" % (e, val_loss)) if lab_f1_macro > max_f1: max_f1 = lab_f1_macro print("----save best epoch:%d, f1:%f---" % (e, max_f1)) # torch.save(model.state_dict(), model_pth) torch.save({'epoch': e, 'model': model.state_dict()}, model_pth) run_test(model, cfg)