예제 #1
0
def traverse():
    graph = Graph()
    visited = set()
    test_path = list()
    mapped_rooms = graph.dft(
        player.current_room
    )  # maps out the graph connecting each room with its neighbors
    rooms = [
        room for room in mapped_rooms
    ]  # a list of all rooms in the order in which they were added to the stack

    while len(visited) < len(room_graph) - 1:
        path = graph.bfs(
            rooms[0], rooms[1]
        )  # As long as there's rooms to visit, we take the shortest path between the first two rooms

        while len(
                path
        ) > 1:  # While there is at least two rooms in the shortest path we check if the adjacent_room is a neighbor of the current_room and if it is we append the direction value to the adjacent_room
            current_room = path[0]
            adjacent_room = path[1]

            if adjacent_room in mapped_rooms[current_room]:
                test_path.append(mapped_rooms[current_room][adjacent_room])
            path.remove(current_room)
        rooms.remove(
            rooms[0]
        )  # Removes the room you checked and ads it to the visited so that you can keep checking each room through the list
        visited.add(rooms[0])

    return test_path
예제 #2
0
def earliest_ancestor(ancestors, starting_node):
    """
    given the dataset and the ID of an individual in the dataset, 
    returns their earliest known ancestor – 
    the one at the farthest distance from the input individual. 
    If there is more than one ancestor tied for "earliest", 
    return the one with the lowest numeric ID. 
    If the input individual has no parents, the function should return -1.
    """
    # Instantiate graph, count and way to track final vertex
    graph = Graph()
    final_v = 0
    total_counter = 0

    # for people in ancestors
    # add vertex and edge
    for people in ancestors:
        graph.add_vertex(people[0])
        graph.add_vertex(people[1])

    for people in ancestors:
        graph.add_edge(people[1], people[0])

    # Instantiate Stack() to hold nodes to visit
    to_visit = Stack()
    to_visit.push(starting_node)

    # set to hold visited
    visited = set()

    # if not ancestors return -1
    # no ancestors means no neighbors so it must be own ancestor
    # -1 for being your own ancestor ... lol hillbilly - I am my own grandpa
    if len(graph.get_neighbors(starting_node)) == 0:
        return -1

    count = 0
    # so long as we have vertex to visit start popping
    while to_visit.size() > 0:
        vertex = to_visit.pop()

        if len(graph.get_neighbors(vertex)) == 0:
            if count > total_counter:
                total_counter = count
                final_v = vertex
            if count == total_counter:
                if vertex < final_v:
                    final_v = vertex

        if vertex not in visited:
            visited.add(vertex)

            if len(graph.get_neighbors(vertex)) != 0:
                for next_v in graph.get_neighbors(vertex):
                    to_visit.push(next_v)
                count += 1
            else:
                if to_visit.size() == 0:
                    return final_v
예제 #3
0
 def __init__(self, input_file):
     super(PRM, self).__init__(input_file)
     self.input_file = input_file
     self.gPrm = Graph()
     self.collision_checkList = {}
     self.gDict = {}
     self.visitedCollide = {}
     gPoints = self.get_grapple_points()
     # for i in range(self.num_grapple_points):
     self.gDict[gPoints[0]] = Graph()
예제 #4
0
def check_weight_update(weight_file, topo_file, nbrs):
    global curr_table
    global label
    global t_start

    print "Checking for Topology Changes"
    path = './' + label + '/weights'
    update = Graph()
    update.init_config(label, weight_file, topo_file)
    lock.acquire()
    if curr_table.serialize != update.serialize:
        curr_table.serialize = copy.deepcopy(update.serialize)
        print "Topology update detected. Rerouting..."
        update.bellman_on_src(label)
        curr_table.routes[label] = copy.deepcopy(update.routes[label])
        curr_table.set_routes(copy.deepcopy(update.get_routes()))
        curr_table.hops[label] = copy.deepcopy(update.hops[label])
        curr_table.set_hops(copy.deepcopy(update.get_hops()))
        curr_table.start = datetime.now()
        curr_table.bellman_on_src(label)
        print curr_table.get_routes()
        send_to_nbrs(nbrs)
    lock.release()
    threading.Timer(
        period, check_weight_update,
        [weight_file, topo_file, nbrs]).start()  # Trigger Periodic Check
예제 #5
0
        def getWinningStates(self, activePlayer):
            winningStates = []
            #WINNING STATE 1 (2 Vertices)
            a1 = Vertex("a", activePlayer)
            b1 = Vertex("b", 1 - activePlayer)
            e1 = Edge(a1, b1)
            V1 = {a1, b1}
            E1 = {e1}
            winningState1 = Graph(V1, E1)
            winningStates.append(winningState1)

            #WINNING STATE 2 (3 Vertices)
            a2 = Vertex("a", activePlayer)
            b2 = Vertex("b", activePlayer)
            c2 = Vertex("c", 1 - activePlayer)
            e1 = Edge(a2, b2)
            e2 = Edge(a2, c2)
            V2 = {a2, b2, c2}
            E2 = {e1, e2}
            winningState2 = Graph(V2, E2)
            winningStates.append(winningState2)

            #WINNING STATE 3 (4 Vertices)
            a4 = Vertex("a", activePlayer)
            b4 = Vertex("b", activePlayer)
            c4 = Vertex("c", 1 - activePlayer)
            d4 = Vertex("d", 1 - activePlayer)

            e1 = Edge(a4, b4)
            e2 = Edge(a4, c4)
            e3 = Edge(a4, d4)
            e4 = Edge(c4, d4)
            e5 = Edge(b4, c4)

            V4 = {a4, b4, c4, d4}
            E3 = {e1, e2, e3}
            winningState3 = Graph(V4, E3)
            winningStates.append(winningState3)
            #ADD ON 3

            E4 = {e1, e2, e3, e4}
            winningStates.append(Graph(V4, E4))

            E5 = {e1, e2, e3, e4, e5}
            winningStates.append(Graph(V4, E5))

            #WINNING STATE 3
            return winningStates
예제 #6
0
def BinomialRandomGraph(k, p):
    v = {Vertex(i) for i in range(2 * k)}
    e = {
        Edge(a, b)
        for (a, b) in itertools.combinations(v, 2) if random.random() < p
    }
    return Graph(v, e)
예제 #7
0
def shortest_path(source, target):
    """
    Returns the shortest list of (movie_id, person_id) pairs
    that connect the source to the target.

    If no possible path, returns None.
    """
    frontier = QueueFrontier()
    node = Node(source, None, None)
    frontier.add(node)
    nodes_explored = []
    edges = dict()

    print("Calculating...")
    
    while True:
  
        if frontier.empty():
            graph = Graph(edges, [])
            graph.draw_graph("my_graph.png")
            return None
        
        node = frontier.remove()
        
        node_person_name = people[node.get_person_id()]["name"]
        
        if node.get_person_id() == target:
            path = []
            path_name_labels = [people[source]["name"]]
            
            while node.get_parent() is not None:
                path.append([node.get_movie_id(), node.get_person_id()])
                path_name_labels.append(people[node.get_person_id()]["name"])
                node = node.get_parent()
            
            path.reverse()
            
            graph = Graph(edges, path_name_labels)
            graph.draw_graph("output_graph.png")
            
            return path
        else:
            nodes_explored.append(node.get_person_id())
            
            for movie_id, person_id in neighbors_for_person(node.get_person_id()):
                
                child = Node(person_id, node, movie_id)
                
                child_person_name = people[child.get_person_id()]["name"]
                movie_name = movies[child.get_movie_id()]["title"]
                
                if(node_person_name != child_person_name):
                    edges[(node_person_name, child_person_name)] = movie_name
                
                if not frontier.contains_state(person_id) and person_id not in nodes_explored:
                    frontier.add(child)
예제 #8
0
        def getLosingStates(self, activePlayer):
            losingStates = []
            #LOSING STATE 1
            a1 = Vertex("a", activePlayer)
            b1 = Vertex("b", activePlayer)
            c1 = Vertex("c", 1 - activePlayer)
            d1 = Vertex("d", 1 - activePlayer)
            e1 = Edge(a1, b1)
            e2 = Edge(b1, c1)
            e3 = Edge(c1, d1)
            V1 = {a1, b1, c1, d1}
            E1 = {e1, e2, e3}
            losingState1 = Graph(V1, E1)
            losingStates.append(losingState1)

            #LOSING STATE 2
            a1 = Vertex("a", activePlayer)
            b1 = Vertex("b", 1 - activePlayer)
            c1 = Vertex("c", activePlayer)
            e1 = Edge(a1, b1)
            e2 = Edge(b1, c1)
            V1 = {a1, b1, c1}
            E1 = {e1, e2}
            losingState2 = Graph(V1, E1)
            losingStates.append(losingState2)

            #LOSING STATE 3 (4 Vertices)
            a3 = Vertex("a", 1 - activePlayer)
            b3 = Vertex("b", 1 - activePlayer)
            c3 = Vertex("c", activePlayer)
            d3 = Vertex("d", activePlayer)

            e1 = Edge(a3, b3)
            e2 = Edge(a3, c3)
            e3 = Edge(a3, d3)
            e4 = Edge(c3, d3)
            e5 = Edge(b3, d3)

            V4 = {a3, b3, c3, d3}
            E3 = {e1, e2, e3}
            losingState3 = Graph(V4, E3)
            losingStates.append(losingState3)
            #ADD ON

            E4 = {e1, e2, e3, e4}
            losingStates.append(Graph(V4, E4))

            E3a = {e1, e2, Edge(b3, d3)}
            losingStates.append(Graph(V4, E3a))

            E5 = {e1, e4}
            losingStates.append(Graph(V4, E5))

            E6 = {e2, e5}
            losingStates.append(Graph(V4, E5))
            #LOSING STATE 5
            return losingStates
예제 #9
0
def play():
    # create an array of visited rooms to keep track of
    visited = set()
    graph = Graph()
    # the path we take in that one run of the game
    trav_path = []
    # using dfs to find the rooms - find all rooms on possible branch
    d_rooms = graph.dfs(player.current_room)
    # returns and array of the rooms in d_rooms
    rooms = [d_room for d_room in d_rooms]
    # while total visited is less than the total rooms in graph of world - 1
    while (len(visited) < len(room_graph) - 1):
        # current room is the first room in the rooms array
        curr_room = rooms[0]
        # the next traverse will be to the next item in the rooms array
        next_room = rooms[1]

        # use a bfs to find the shortest path to destination - explores all the neighbour nodes
        shortest = graph.bfs(curr_room, next_room)
        # loop through shortest until nothing left
        while len(shortest) > 1:
            # find the neighbours
            curr_room_nays = d_rooms[shortest[0]]
            # next traverse will be to the next item in shortest array
            next_room = shortest[1]
            # if the next room (in the shortest path) exists in the current neighbours of curr room
            if next_room in curr_room_nays:
                trav_path.append(curr_room_nays[next_room])
            # remove the first room from the queue
            shortest.remove(shortest[0])

        # remove the current room from the total rooms
        rooms.remove(curr_room)
        # pop it on to the visited rooms array
        visited.add(curr_room)

    return trav_path
예제 #10
0
def set_init_graph(weight_file, topo_file):
    global curr_table
    global label

    path = './' + label + '/weights'
    g = Graph()
    g.init_config(label, weight_file, topo_file)
    g.bellman_on_src(label)
    curr_table = g
    print "Initial Table:\n" + str(curr_table.get_routes())
예제 #11
0
def earliest_ancestor(ancestors, starting_node):
    graph = Graph()

    # Add vertices
    for i in ancestors:
        if i[0] not in graph.vertices:
            graph.add_vertex(i[0])
        if i[1] not in graph.vertices:
            graph.add_vertex(i[1])

    # Add edges
    for i in ancestors:
        graph.add_edge(i[1], i[0])

    path = graph.bft(starting_node)
    oldest = path[-1]

    if starting_node == oldest:
        return -1
    else:
        return oldest
예제 #12
0
def earliest_ancestor(ancestors, starting_node):
    graph = Graph()
    for parent, child in ancestors:
        vertices = graph.vertices
        if parent not in vertices:
            graph.add_vertex(parent)
        if child not in vertices:
            graph.add_vertex(child)
        graph.add_edge(child, parent)

    s = Stack()
    s.push([starting_node])

    longest = [starting_node]
    visited = set()
    oldest = -1

    while s.size() > 0:
        path = s.pop()
        curr = path[-1]
        # breakpoint()
        if (len(path) > len(longest)) or (len(path) == len(longest)
                                          and curr < oldest):
            longest = path
            oldest = longest[-1]

        if curr not in visited:
            visited.add(curr)

            parents = graph.get_neighbors(curr)

            for parent in parents:
                new_path = path + [parent]
                s.push(new_path)

    return oldest
예제 #13
0
def earliest_ancestor(ancestors, starting_node):
    ancestor_tree = Graph()
    # Iterate through ancestors
    for (parent, child) in ancestors:
        # Add vertices to ancestor_tree
        ancestor_tree.add_vertex(parent)
        ancestor_tree.add_vertex(child)
    # print("ancestor tree", ancestor_tree.vertices)

    for (parent, child) in ancestors:
        # Add edges
        ancestor_tree.add_edge(child, parent)
    # print("neighbors", ancestor_tree.get_neighbors(5))
    # print("ancestor tree", ancestor_tree.vertices)

    longest_path = 1  # Keep track of # ancestors; highest means most ancestors
    earliest_ancestor = 0  # Store last node (as an integer)
    for i in ancestor_tree.vertices:
        # print("i", i)  # Print vertices
        # Call dfs function from Graph class
        path = ancestor_tree.dfs(
            i, starting_node)  # i is each vertex/node in graph
        # print("ancestor dfs", ancestor_tree.dfs(starting_node, i))
        print('path', path)
        if path:  # If there are items in list
            if len(
                    path
            ) > longest_path:  # If list length is greater than longest path
                longest_path = len(
                    path)  # Set longest path equal to list length
                earliest_ancestor = i  # Set earliest_ancestor equal to current node/vertex
        elif not path and longest_path == 1:  # If path is 'None' and 'longest_path' is our default of 1
            earliest_ancestor = -1

    print("earliest ancestor", earliest_ancestor)
    return earliest_ancestor
예제 #14
0
def earliest_ancestor(ancestors, starting_node):
    ancestorTree = Graph()
    # Iterate through ancestors to find vertices
    # for (parent,child) in ancestors
    for ancestor in ancestors:
        for vert in ancestor:
            ancestorTree.add_vertex(vert)
    # print("Tree", ancestorTree.vertices)

    for ancestor in ancestors:
        ancestorTree.add_edge(ancestor[1], ancestor[0])
    # print("Tree", ancestorTree.vertices)

    # default length to check the length of path list against
    longest_path = 1
    # counter for storing storing the last node
    last_node = 0
    # passing the vertices by reference
    ancestor_vert = ancestorTree.vertices

    # Iterate through the vertices of the ancestorTree
    for i in ancestor_vert:
        # i = individual nodes/vertices added using add_vert()
        # returns a list of nodes and sets the list to the variable path
        path = ancestorTree.dfs(starting_node, i)
        # print("path list loop", path)

        # If path is not = to None and the length of the path list in greater that longest_path which defaults to the value integer 1
        if path is not None and len(path) > longest_path:
            # set longest_path = length of the path
            longest_path = len(path)
            print("longest_path", longest_path)
            # last node is = to last node/vertice of the longest_path
            last_node = i
            print("last_node", last_node)
        # I was missing that longest_path defaults to 1.
        # If path list is empty and longest_path is set to default of 1
        elif not path and longest_path == 1:
            # print("empty", path)
            # print("elif path", longest_path)
            # set last_node to -1
            last_node = -1

    # print("Out of for loop", last_node)
    return last_node
예제 #15
0
def earliest_ancestor(ancestors, current_vertex):
    # create blank graph for ancestors
    current_graph = Graph()
    # loop through and add all ancestors
    for ancestor in ancestors:
        current_graph.add_vertex(ancestor[0])
        current_graph.add_vertex(ancestor[1])
    # loop through and add all edges
    for ancestor in ancestors:
        current_graph.add_edge(ancestor[1], ancestor[0])

    max_path = 1
    # if the input has no parents return -1
    earliest_ancestor = -1
    # create blank traversing path
    traversing_path = Stack()
    # Start traversing path with the first vertex
    traversing_path.push([current_vertex])

    # while traversing path not empty
    while traversing_path.size() > 0:
        # start traversed path
        traversed_path = traversing_path.pop()
        # get last vertex in the traversed path
        last_vertex = traversed_path[-1]
        # get length of traversed path
        tp_length = len(traversed_path)
        # (if traversed path is longer than or equal to max_path AND
        # if last vertex is smaller than current earliest ancestor )
        # ##### OR
        # if traversed path is longer than max_path
        if (tp_length >= max_path
                and last_vertex < earliest_ancestor) or (tp_length > max_path):
            # set earliest ancestor as last vertex
            # set max path as last item in traversed path
            earliest_ancestor = last_vertex
            max_path = len(traversed_path)
        # get neighbors of last vertex
        neighbors = current_graph.vertices[last_vertex]
        # loop through each neighbor
        for neighbor in neighbors:
            # get current path list, append neighbor to it, and add to traversing path
            new_path = list(traversed_path)
            new_path.append(neighbor)
            traversing_path.push(new_path)
    # return earliest ancestor
    return earliest_ancestor
예제 #16
0
def earliest_ancestor(ancestors, starting_node):
    '''
    Build the graph
    '''
    # instantiate a new graph object
    graph = Graph()
    # loop over all pairs in ancestors
    for pair in ancestors:
        # add pair[0] and pair[1] to the graph
        graph.add_vertex(pair[0])
        graph.add_vertex(pair[1])
        # build the edges in reverse
        graph.add_edge(pair[1], pair[0])
    '''
    BFS with paths to find the earliest known ancestor
    '''
    # create a queue
    queue = Queue()
    # enqueue starting node inside a list
    queue.enqueue([starting_node])
    # set a max path length to 1
    max_path_length = 1
    # set initial earliest ancestor
    earliest_ancestor = -1
    # while the queue is not empty
    while not queue.is_empty():
        # dequeue to the path
        path = queue.dequeue()
        # set a vertex to the last item in the path
        vertex = path[-1]
        # if path is longer or equal and the value is smaller, or if the path is longer
        if (len(path) >= max_path_length and
                vertex < earliest_ancestor) or (len(path) > max_path_length):
            # set the earliest ancestor to the vertex
            earliest_ancestor = vertex
            # set the max path length to the len of the path
            max_path_length = len(path)
        # loop over next vertex in the set of vertices for the current vertex
        for next_vertex in graph.vertices[vertex]:
            # set a new path equal to a new list of the path
            path_copy = list(path)
            # append next vertex to new path
            path_copy.append(next_vertex)
            # enqueue the new path
            queue.enqueue(path_copy)
    # return earliest ancestor
    return earliest_ancestor
예제 #17
0
# roomGraph={0: [(3, 5), {'n': 1, 's': 5, 'e': 3, 'w': 7}], 1: [(3, 6), {'s': 0, 'n': 2}], 2: [(3, 7), {'s': 1}], 3: [(4, 5), {'w': 0, 'e': 4}], 4: [(5, 5), {'w': 3}], 5: [(3, 4), {'n': 0, 's': 6}], 6: [(3, 3), {'n': 5}], 7: [(2, 5), {'w': 8, 'e': 0}], 8: [(1, 5), {'e': 7}]}
# roomGraph={0: [(3, 5), {'n': 1, 's': 5, 'e': 3, 'w': 7}], 1: [(3, 6), {'s': 0, 'n': 2}], 2: [(3, 7), {'s': 1}], 3: [(4, 5), {'w': 0, 'e': 4}], 4: [(5, 5), {'w': 3}], 5: [(3, 4), {'n': 0, 's': 6}], 6: [(3, 3), {'n': 5, 'w': 11}], 7: [(2, 5), {'w': 8, 'e': 0}], 8: [(1, 5), {'e': 7}], 9: [(1, 4), {'n': 8, 's': 10}], 10: [(1, 3), {'n': 9, 'e': 11}], 11: [(2, 3), {'w': 10, 'e': 6}]}
# roomGraph={0: [(3, 5), {'n': 1, 's': 5, 'e': 3, 'w': 7}], 1: [(3, 6), {'s': 0, 'n': 2, 'e': 12, 'w': 15}], 2: [(3, 7), {'s': 1}], 3: [(4, 5), {'w': 0, 'e': 4}], 4: [(5, 5), {'w': 3}], 5: [(3, 4), {'n': 0, 's': 6}], 6: [(3, 3), {'n': 5, 'w': 11}], 7: [(2, 5), {'w': 8, 'e': 0}], 8: [(1, 5), {'e': 7}], 9: [(1, 4), {'n': 8, 's': 10}], 10: [(1, 3), {'n': 9, 'e': 11}], 11: [(2, 3), {'w': 10, 'e': 6}], 12: [(4, 6), {'w': 1, 'e': 13}], 13: [(5, 6), {'w': 12, 'n': 14}], 14: [(5, 7), {'s': 13}], 15: [(2, 6), {'e': 1, 'w': 16}], 16: [(1, 6), {'n': 17, 'e': 15}], 17: [(1, 7), {'s': 16}]}
roomGraph={494: [(1, 8), {'e': 457}], 492: [(1, 20), {'e': 400}], 493: [(2, 5), {'e': 478}], 457: [(2, 8), {'e': 355, 'w': 494}], 484: [(2, 9), {'n': 482}], 482: [(2, 10), {'s': 484, 'e': 404}], 486: [(2, 13), {'e': 462}], 479: [(2, 15), {'e': 418}], 465: [(2, 16), {'e': 368}], 414: [(2, 19), {'e': 365}], 400: [(2, 20), {'e': 399, 'w': 492}], 451: [(2, 21), {'e': 429}], 452: [(2, 22), {'e': 428}], 478: [(3, 5), {'e': 413, 'w': 493}], 393: [(3, 6), {'e': 375}], 437: [(3, 7), {'e': 347}], 355: [(3, 8), {'e': 312, 'w': 457}], 433: [(3, 9), {'e': 372}], 404: [(3, 10), {'n': 339, 'w': 482}], 339: [(3, 11), {'s': 404, 'e': 314}], 367: [(3, 12), {'n': 462, 'e': 344}], 462: [(3, 13), {'s': 367, 'w': 486}], 463: [(3, 14), {'e': 458, 'n': 418}], 418: [(3, 15), {'e': 349, 'w': 479}], 368: [(3, 16), {'n': 436, 'e': 284, 'w': 465}], 436: [(3, 17), {'s': 368}], 447: [(3, 18), {'n': 365}], 365: [(3, 19), {'s': 447, 'e': 333, 'w': 414}], 399: [(3, 20), {'e': 358, 'w': 400}], 429: [(3, 21), {'n': 428, 'w': 451}], 428: [(3, 22), {'s': 429, 'e': 411, 'w': 452}], 419: [(4, 4), {'n': 413}], 413: [(4, 5), {'n': 375, 's': 419, 'w': 478}], 375: [(4, 6), {'n': 347, 's': 413, 'w': 393}], 347: [(4, 7), {'n': 312, 's': 375, 'w': 437}], 312: [(4, 8), {'s': 347, 'e': 299, 'w': 355}], 372: [(4, 9), {'e': 263, 'w': 433}], 258: [(4, 10), {'e': 236}], 314: [(4, 11), {'e': 220, 'w': 339}], 344: [(4, 12), {'n': 359, 'e': 230, 'w': 367}], 359: [(4, 13), {'n': 458, 's': 344}], 458: [(4, 14), {'s': 359, 'w': 463}], 349: [(4, 15), {'n': 284, 'w': 418}], 284: [(4, 16), {'n': 470, 's': 349, 'e': 254, 'w': 368}], 470: [(4, 17), {'s': 284}], 301: [(4, 18), {'e': 187}], 333: [(4, 19), {'n': 358, 'e': 303, 'w': 365}], 358: [(4, 20), {'n': 397, 's': 333, 'w': 399}], 397: [(4, 21), {'s': 358}], 411: [(4, 22), {'e': 324, 'w': 428}], 396: [(4, 23), {'e': 391}], 449: [(5, 4), {'n': 432, 'e': 450}], 432: [(5, 5), {'n': 405, 's': 449, 'e': 473}], 405: [(5, 6), {'n': 356, 's': 432}], 356: [(5, 7), {'n': 299, 's': 405}], 299: [(5, 8), {'n': 263, 's': 356, 'w': 312}], 263: [(5, 9), {'n': 236, 's': 299, 'w': 372}], 236: [(5, 10), {'s': 263, 'e': 216, 'w': 258}], 220: [(5, 11), {'n': 230, 'e': 215, 'w': 314}], 230: [(5, 12), {'s': 220, 'w': 344}], 266: [(5, 13), {'n': 379, 'e': 260}], 379: [(5, 14), {'s': 266}], 274: [(5, 15), {'e': 222}], 254: [(5, 16), {'e': 205, 'w': 284}], 227: [(5, 17), {'e': 194}], 187: [(5, 18), {'n': 303, 'e': 167, 'w': 301}], 303: [(5, 19), {'n': 352, 's': 187, 'w': 333}], 352: [(5, 20), {'s': 303}], 357: [(5, 21), {'e': 342}], 324: [(5, 22), {'n': 391, 'e': 289, 'w': 411}], 391: [(5, 23), {'n': 489, 's': 324, 'w': 396}], 489: [(5, 24), {'n': 491, 's': 391}], 491: [(5, 25), {'s': 489}], 450: [(6, 4), {'w': 449}], 473: [(6, 5), {'w': 432}], 423: [(6, 6), {'e': 395}], 469: [(6, 7), {'e': 362}], 310: [(6, 8), {'n': 271}], 271: [(6, 9), {'s': 310, 'e': 217}], 216: [(6, 10), {'e': 213, 'w': 236}], 215: [(6, 11), {'n': 243, 'e': 177, 'w': 220}], 243: [(6, 12), {'s': 215}], 260: [(6, 13), {'n': 226, 'w': 266}], 226: [(6, 14), {'s': 260, 'e': 225}], 222: [(6, 15), {'e': 190, 'w': 274}], 205: [(6, 16), {'e': 162, 'w': 254}], 194: [(6, 17), {'e': 128, 'w': 227}], 167: [(6, 18), {'e': 108, 'w': 187}], 171: [(6, 19), {'e': 168}], 297: [(6, 20), {'e': 207}], 342: [(6, 21), {'e': 221, 'w': 357}], 289: [(6, 22), {'n': 319, 'e': 250, 'w': 324}], 319: [(6, 23), {'n': 441, 's': 289}], 441: [(6, 24), {'s': 319}], 453: [(6, 25), {'e': 351}], 395: [(7, 6), {'n': 362, 'w': 423}], 362: [(7, 7), {'n': 327, 's': 395, 'w': 469}], 327: [(7, 8), {'s': 362, 'e': 256}], 217: [(7, 9), {'n': 213, 'w': 271}], 213: [(7, 10), {'s': 217, 'e': 209, 'w': 216}], 177: [(7, 11), {'e': 156, 'w': 215}], 180: [(7, 12), {'e': 164}], 235: [(7, 13), {'e': 158}], 225: [(7, 14), {'e': 105, 'w': 226}], 190: [(7, 15), {'e': 129, 'w': 222}], 162: [(7, 16), {'n': 128, 'w': 205}], 128: [(7, 17), {'s': 162, 'e': 92, 'w': 194}], 108: [(7, 18), {'e': 81, 'w': 167}], 168: [(7, 19), {'n': 207, 'e': 137, 'w': 171}], 207: [(7, 20), {'s': 168, 'w': 297}], 221: [(7, 21), {'n': 250, 'e': 174, 'w': 342}], 250: [(7, 22), {'n': 295, 's': 221, 'w': 289}], 295: [(7, 23), {'n': 332, 's': 250}], 332: [(7, 24), {'n': 351, 's': 295}], 351: [(7, 25), {'n': 417, 's': 332, 'w': 453}], 417: [(7, 26), {'n': 442, 's': 351}], 442: [(7, 27), {'s': 417}], 410: [(8, 5), {'e': 406}], 323: [(8, 6), {'n': 279}], 279: [(8, 7), {'n': 256, 's': 323}], 256: [(8, 8), {'n': 241, 's': 279, 'w': 327}], 241: [(8, 9), {'s': 256, 'e': 193}], 209: [(8, 10), {'n': 156, 'w': 213}], 156: [(8, 11), {'s': 209, 'e': 149, 'w': 177}], 164: [(8, 12), {'n': 158, 'w': 180}], 158: [(8, 13), {'s': 164, 'e': 126, 'w': 235}], 105: [(8, 14), {'n': 129, 'e': 104, 'w': 225}], 129: [(8, 15), {'s': 105, 'w': 190}], 100: [(8, 16), {'n': 92}], 92: [(8, 17), {'n': 81, 's': 100, 'w': 128}], 81: [(8, 18), {'n': 137, 's': 92, 'e': 45, 'w': 108}], 137: [(8, 19), {'s': 81, 'w': 168}], 124: [(8, 20), {'n': 174, 'e': 112}], 174: [(8, 21), {'n': 277, 's': 124, 'w': 221}], 277: [(8, 22), {'n': 331, 's': 174}], 331: [(8, 23), {'n': 387, 's': 277}], 387: [(8, 24), {'n': 444, 's': 331}], 444: [(8, 25), {'s': 387}], 422: [(8, 26), {'n': 461, 'e': 394}], 461: [(8, 27), {'s': 422}], 406: [(9, 5), {'n': 315, 'w': 410}], 315: [(9, 6), {'n': 269, 's': 406, 'e': 335}], 269: [(9, 7), {'n': 203, 's': 315}], 203: [(9, 8), {'n': 193, 's': 269}], 193: [(9, 9), {'n': 191, 's': 203, 'w': 241}], 191: [(9, 10), {'n': 149, 's': 193}], 149: [(9, 11), {'n': 135, 's': 191, 'w': 156}], 135: [(9, 12), {'n': 126, 's': 149}], 126: [(9, 13), {'n': 104, 's': 135, 'w': 158}], 104: [(9, 14), {'n': 89, 's': 126, 'w': 105}], 89: [(9, 15), {'n': 72, 's': 104}], 72: [(9, 16), {'n': 69, 's': 89}], 69: [(9, 17), {'s': 72, 'e': 41}], 45: [(9, 18), {'n': 85, 'e': 40, 'w': 81}], 85: [(9, 19), {'s': 45}], 112: [(9, 20), {'n': 210, 'e': 106, 'w': 124}], 210: [(9, 21), {'s': 112}], 208: [(9, 22), {'n': 307, 'e': 166}], 307: [(9, 23), {'s': 208}], 341: [(9, 24), {'e': 316}], 374: [(9, 25), {'e': 340}], 394: [(9, 26), {'n': 426, 'e': 318, 'w': 422}], 426: [(9, 27), {'s': 394}], 477: [(9, 29), {'e': 443}], 485: [(10, 3), {'e': 481}], 346: [(10, 5), {'n': 335}], 335: [(10, 6), {'s': 346, 'e': 378, 'w': 315}], 369: [(10, 7), {'n': 247}], 247: [(10, 8), {'s': 369, 'e': 234}], 151: [(10, 9), {'n': 188, 'e': 133}], 188: [(10, 10), {'s': 151}], 183: [(10, 11), {'n': 145}], 145: [(10, 12), {'s': 183, 'e': 113}], 122: [(10, 13), {'n': 99}], 99: [(10, 14), {'n': 83, 's': 122}], 83: [(10, 15), {'s': 99, 'e': 80}], 76: [(10, 16), {'n': 41}], 41: [(10, 17), {'s': 76, 'e': 36, 'w': 69}], 40: [(10, 18), {'n': 74, 'e': 19, 'w': 45}], 74: [(10, 19), {'s': 40}], 106: [(10, 20), {'n': 161, 'e': 79, 'w': 112}], 161: [(10, 21), {'n': 166, 's': 106}], 166: [(10, 22), {'s': 161, 'w': 208}], 292: [(10, 23), {'n': 316, 'e': 185}], 316: [(10, 24), {'s': 292, 'w': 341}], 340: [(10, 25), {'n': 318, 'w': 374}], 318: [(10, 26), {'s': 340, 'e': 199, 'w': 394}], 392: [(10, 27), {'n': 408, 'e': 281}], 408: [(10, 28), {'n': 443, 's': 392}], 443: [(10, 29), {'s': 408, 'w': 477}], 481: [(11, 3), {'n': 472, 'w': 485}], 472: [(11, 4), {'n': 466, 's': 481, 'e': 495}], 466: [(11, 5), {'n': 378, 's': 472}], 378: [(11, 6), {'s': 466, 'w': 335}], 280: [(11, 7), {'n': 234}], 234: [(11, 8), {'n': 133, 's': 280, 'e': 259, 'w': 247}], 133: [(11, 9), {'s': 234, 'e': 118, 'w': 151}], 157: [(11, 10), {'e': 110}], 153: [(11, 11), {'e': 97}], 113: [(11, 12), {'e': 94, 'w': 145}], 68: [(11, 13), {'e': 57}], 58: [(11, 14), {'e': 23}], 80: [(11, 15), {'n': 11, 'w': 83}], 11: [(11, 16), {'s': 80, 'e': 3}], 36: [(11, 17), {'e': 21, 'w': 41}], 19: [(11, 18), {'n': 32, 'e': 15, 'w': 40}], 32: [(11, 19), {'s': 19}], 79: [(11, 20), {'e': 46, 'w': 106}], 63: [(11, 21), {'n': 140, 'e': 61}], 140: [(11, 22), {'s': 63}], 185: [(11, 23), {'n': 195, 'e': 155, 'w': 292}], 195: [(11, 24), {'s': 185}], 328: [(11, 25), {'e': 200}], 199: [(11, 26), {'n': 281, 'e': 197, 'w': 318}], 281: [(11, 27), {'n': 350, 's': 199, 'w': 392}], 350: [(11, 28), {'n': 425, 's': 281}], 425: [(11, 29), {'n': 434, 's': 350}], 434: [(11, 30), {'s': 425}], 495: [(12, 4), {'w': 472}], 415: [(12, 5), {'n': 306}], 306: [(12, 6), {'n': 291, 's': 415}], 291: [(12, 7), {'n': 259, 's': 306}], 259: [(12, 8), {'s': 291, 'w': 234}], 118: [(12, 9), {'n': 110, 'e': 218, 'w': 133}], 110: [(12, 10), {'n': 97, 's': 118, 'w': 157}], 97: [(12, 11), {'n': 94, 's': 110, 'w': 153}], 94: [(12, 12), {'n': 57, 's': 97, 'w': 113}], 57: [(12, 13), {'n': 23, 's': 94, 'w': 68}], 23: [(12, 14), {'s': 57, 'e': 6, 'w': 58}], 16: [(12, 15), {'e': 8}], 3: [(12, 16), {'n': 21, 'e': 0, 'w': 11}], 21: [(12, 17), {'s': 3, 'w': 36}], 15: [(12, 18), {'e': 13, 'w': 19}], 47: [(12, 19), {'e': 14}], 46: [(12, 20), {'n': 61, 'e': 17, 'w': 79}], 61: [(12, 21), {'n': 82, 's': 46, 'w': 63}], 82: [(12, 22), {'n': 155, 's': 61}], 155: [(12, 23), {'s': 82, 'w': 185}], 175: [(12, 24), {'n': 200, 'e': 141}], 200: [(12, 25), {'s': 175, 'e': 204, 'w': 328}], 197: [(12, 26), {'e': 165, 'w': 199}], 223: [(12, 27), {'n': 483, 'e': 169}], 483: [(12, 28), {'s': 223}], 488: [(13, 4), {'n': 409}], 409: [(13, 5), {'n': 345, 's': 488}], 345: [(13, 6), {'n': 261, 's': 409}], 261: [(13, 7), {'n': 252, 's': 345}], 252: [(13, 8), {'n': 218, 's': 261}], 218: [(13, 9), {'n': 144, 's': 252, 'w': 118}], 144: [(13, 10), {'n': 134, 's': 218}], 134: [(13, 11), {'n': 65, 's': 144}], 65: [(13, 12), {'n': 62, 's': 134}], 62: [(13, 13), {'n': 6, 's': 65}], 6: [(13, 14), {'s': 62, 'e': 5, 'w': 23}], 8: [(13, 15), {'n': 0, 'w': 16}], 0: [(13, 16), {'n': 4, 's': 8, 'e': 1, 'w': 3}], 4: [(13, 17), {'s': 0}], 13: [(13, 18), {'n': 14, 'e': 9, 'w': 15}], 14: [(13, 19), {'n': 17, 's': 13, 'w': 47}], 17: [(13, 20), {'n': 33, 's': 14, 'e': 28, 'w': 46}], 33: [(13, 21), {'s': 17}], 102: [(13, 22), {'n': 107, 'e': 64}], 107: [(13, 23), {'n': 141, 's': 102}], 141: [(13, 24), {'s': 107, 'w': 175}], 204: [(13, 25), {'w': 200}], 165: [(13, 26), {'n': 169, 'e': 163, 'w': 197}], 169: [(13, 27), {'n': 385, 's': 165, 'w': 223}], 385: [(13, 28), {'s': 169}], 497: [(13, 30), {'e': 366}], 424: [(14, 4), {'n': 322}], 322: [(14, 5), {'s': 424, 'e': 276}], 290: [(14, 6), {'n': 264}], 264: [(14, 7), {'n': 244, 's': 290}], 244: [(14, 8), {'s': 264, 'e': 232}], 181: [(14, 9), {'n': 179}], 179: [(14, 10), {'n': 96, 's': 181, 'e': 201}], 96: [(14, 11), {'n': 66, 's': 179}], 66: [(14, 12), {'n': 50, 's': 96}], 50: [(14, 13), {'n': 5, 's': 66, 'e': 70}], 5: [(14, 14), {'n': 2, 's': 50, 'w': 6}], 2: [(14, 15), {'n': 1, 's': 5, 'e': 10}], 1: [(14, 16), {'n': 7, 's': 2, 'e': 22, 'w': 0}], 7: [(14, 17), {'n': 9, 's': 1, 'e': 12}], 9: [(14, 18), {'s': 7, 'w': 13}], 30: [(14, 19), {'n': 28}], 28: [(14, 20), {'n': 60, 's': 30, 'w': 17}], 60: [(14, 21), {'n': 64, 's': 28}], 64: [(14, 22), {'n': 111, 's': 60, 'w': 102}], 111: [(14, 23), {'n': 121, 's': 64, 'e': 114}], 121: [(14, 24), {'n': 148, 's': 111, 'e': 123}], 148: [(14, 25), {'n': 163, 's': 121, 'e': 178}], 163: [(14, 26), {'n': 257, 's': 148, 'e': 228, 'w': 165}], 257: [(14, 27), {'n': 388, 's': 163}], 388: [(14, 28), {'s': 257, 'n': 386}], 386: [(14, 29), {'e': 354, 's': 388}], 366: [(14, 30), {'e': 361, 'w': 497}], 467: [(15, 3), {'n': 459}], 459: [(15, 4), {'n': 276, 's': 467}], 276: [(15, 5), {'n': 268, 's': 459, 'w': 322}], 268: [(15, 6), {'n': 265, 's': 276}], 265: [(15, 7), {'n': 232, 's': 268, 'e': 273}], 232: [(15, 8), {'n': 206, 's': 265, 'w': 244}], 206: [(15, 9), {'n': 201, 's': 232}], 201: [(15, 10), {'s': 206, 'w': 179}], 159: [(15, 11), {'n': 116}], 116: [(15, 12), {'n': 70, 's': 159}], 70: [(15, 13), {'s': 116, 'e': 87, 'w': 50}], 38: [(15, 14), {'n': 10}], 10: [(15, 15), {'s': 38, 'w': 2}], 22: [(15, 16), {'w': 1}], 12: [(15, 17), {'n': 20, 'e': 18, 'w': 7}], 20: [(15, 18), {'n': 31, 's': 12, 'e': 26}], 31: [(15, 19), {'n': 37, 's': 20}], 37: [(15, 20), {'n': 91, 's': 31, 'e': 42}], 91: [(15, 21), {'n': 101, 's': 37}], 101: [(15, 22), {'s': 91}], 114: [(15, 23), {'e': 120, 'w': 111}], 123: [(15, 24), {'e': 138, 'w': 121}], 178: [(15, 25), {'w': 148}], 228: [(15, 26), {'n': 253, 'w': 163}], 253: [(15, 27), {'n': 285, 's': 228}], 285: [(15, 28), {'s': 253}], 354: [(15, 29), {'n': 361, 'e': 321, 'w': 386}], 361: [(15, 30), {'s': 354, 'w': 366}], 455: [(16, 4), {'n': 382}], 382: [(16, 5), {'n': 296, 's': 455}], 296: [(16, 6), {'n': 273, 's': 382, 'e': 308}], 273: [(16, 7), {'s': 296, 'e': 298, 'w': 265}], 237: [(16, 8), {'n': 229, 'e': 370}], 229: [(16, 9), {'n': 212, 's': 237}], 212: [(16, 10), {'n': 127, 's': 229}], 127: [(16, 11), {'n': 117, 's': 212, 'e': 173}], 117: [(16, 12), {'n': 87, 's': 127, 'e': 170}], 87: [(16, 13), {'s': 117, 'w': 70}], 54: [(16, 14), {'n': 29}], 29: [(16, 15), {'n': 24, 's': 54}], 24: [(16, 16), {'n': 18, 's': 29, 'e': 25}], 18: [(16, 17), {'s': 24, 'e': 34, 'w': 12}], 26: [(16, 18), {'n': 27, 'w': 20}], 27: [(16, 19), {'s': 26, 'e': 55}], 42: [(16, 20), {'n': 51, 'w': 37}], 51: [(16, 21), {'n': 93, 's': 42}], 93: [(16, 22), {'s': 51}], 120: [(16, 23), {'w': 114}], 138: [(16, 24), {'n': 143, 'e': 139, 'w': 123}], 143: [(16, 25), {'s': 138}], 233: [(16, 26), {'n': 240, 'e': 152}], 240: [(16, 27), {'n': 304, 's': 233}], 304: [(16, 28), {'n': 321, 's': 240}], 321: [(16, 29), {'n': 334, 's': 304, 'w': 354}], 334: [(16, 30), {'s': 321, 'e': 384}], 416: [(17, 4), {'n': 317}], 317: [(17, 5), {'n': 308, 's': 416}], 308: [(17, 6), {'s': 317, 'e': 337, 'w': 296}], 298: [(17, 7), {'e': 360, 'w': 273}], 370: [(17, 8), {'w': 237}], 267: [(17, 9), {'n': 202, 'e': 302}], 202: [(17, 10), {'n': 173, 's': 267, 'e': 249}], 173: [(17, 11), {'s': 202, 'w': 127}], 170: [(17, 12), {'n': 182, 'w': 117}], 182: [(17, 13), {'s': 170, 'e': 211}], 77: [(17, 14), {'n': 43, 'e': 130}], 43: [(17, 15), {'n': 25, 's': 77, 'e': 49}], 25: [(17, 16), {'s': 43, 'w': 24}], 34: [(17, 17), {'n': 35, 'e': 39, 'w': 18}], 35: [(17, 18), {'s': 34, 'e': 44}], 55: [(17, 19), {'n': 56, 'w': 27}], 56: [(17, 20), {'n': 73, 's': 55, 'e': 67}], 73: [(17, 21), {'n': 132, 's': 56}], 132: [(17, 22), {'n': 172, 's': 73}], 172: [(17, 23), {'s': 132}], 139: [(17, 24), {'n': 147, 'e': 176, 'w': 138}], 147: [(17, 25), {'n': 152, 's': 139, 'e': 154}], 152: [(17, 26), {'n': 196, 's': 147, 'w': 233}], 196: [(17, 27), {'n': 278, 's': 152, 'e': 224}], 278: [(17, 28), {'n': 338, 's': 196}], 338: [(17, 29), {'s': 278}], 384: [(17, 30), {'e': 435, 'w': 334}], 460: [(18, 4), {'n': 383}], 383: [(18, 5), {'n': 337, 's': 460}], 337: [(18, 6), {'s': 383, 'w': 308}], 360: [(18, 7), {'n': 364, 'w': 298}], 364: [(18, 8), {'s': 360, 'e': 401}], 302: [(18, 9), {'e': 402, 'w': 267}], 249: [(18, 10), {'w': 202}], 272: [(18, 11), {'n': 248}], 248: [(18, 12), {'n': 211, 's': 272}], 211: [(18, 13), {'s': 248, 'w': 182}], 130: [(18, 14), {'w': 77}], 49: [(18, 15), {'e': 119, 'w': 43}], 52: [(18, 16), {'n': 39}], 39: [(18, 17), {'s': 52, 'e': 71, 'w': 34}], 44: [(18, 18), {'n': 48, 'e': 59, 'w': 35}], 48: [(18, 19), {'s': 44, 'e': 53}], 67: [(18, 20), {'n': 84, 'w': 56}], 84: [(18, 21), {'n': 86, 's': 67}], 86: [(18, 22), {'n': 146, 's': 84, 'e': 95}], 146: [(18, 23), {'s': 86}], 176: [(18, 24), {'w': 139}], 154: [(18, 25), {'n': 192, 'e': 184, 'w': 147}], 192: [(18, 26), {'s': 154, 'e': 239}], 224: [(18, 27), {'n': 287, 'w': 196}], 287: [(18, 28), {'n': 313, 's': 224, 'e': 353}], 313: [(18, 29), {'s': 287}], 435: [(18, 30), {'w': 384}], 464: [(19, 6), {'n': 420}], 420: [(19, 7), {'n': 401, 's': 464}], 401: [(19, 8), {'s': 420, 'e': 427, 'w': 364}], 402: [(19, 9), {'e': 403, 'w': 302}], 371: [(19, 10), {'n': 309, 'e': 430}], 309: [(19, 11), {'n': 286, 's': 371, 'e': 377}], 286: [(19, 12), {'n': 242, 's': 309, 'e': 288}], 242: [(19, 13), {'n': 219, 's': 286}], 219: [(19, 14), {'n': 119, 's': 242, 'e': 305}], 119: [(19, 15), {'s': 219, 'e': 131, 'w': 49}], 115: [(19, 16), {'n': 71, 'e': 160}], 71: [(19, 17), {'s': 115, 'e': 150, 'w': 39}], 59: [(19, 18), {'e': 189, 'w': 44}], 53: [(19, 19), {'n': 75, 'w': 48}], 75: [(19, 20), {'n': 78, 's': 53, 'e': 88}], 78: [(19, 21), {'s': 75, 'e': 90}], 95: [(19, 22), {'n': 109, 'w': 86}], 109: [(19, 23), {'n': 136, 's': 95}], 136: [(19, 24), {'s': 109, 'e': 231}], 184: [(19, 25), {'w': 154}], 239: [(19, 26), {'n': 255, 'e': 336, 'w': 192}], 255: [(19, 27), {'s': 239}], 353: [(19, 28), {'n': 380, 'w': 287}], 380: [(19, 29), {'n': 476, 's': 353, 'e': 445}], 476: [(19, 30), {'s': 380}], 496: [(20, 4), {'n': 475}], 475: [(20, 5), {'n': 448, 's': 496}], 448: [(20, 6), {'n': 438, 's': 475, 'e': 490}], 438: [(20, 7), {'n': 427, 's': 448}], 427: [(20, 8), {'s': 438, 'e': 474, 'w': 401}], 403: [(20, 9), {'e': 439, 'w': 402}], 430: [(20, 10), {'e': 440, 'w': 371}], 377: [(20, 11), {'e': 456, 'w': 309}], 288: [(20, 12), {'n': 326, 'e': 498, 'w': 286}], 326: [(20, 13), {'s': 288}], 305: [(20, 14), {'e': 330, 'w': 219}], 131: [(20, 15), {'e': 329, 'w': 119}], 160: [(20, 16), {'e': 214, 'w': 115}], 150: [(20, 17), {'e': 251, 'w': 71}], 189: [(20, 18), {'e': 275, 'w': 59}], 103: [(20, 19), {'n': 88}], 88: [(20, 20), {'s': 103, 'e': 125, 'w': 75}], 90: [(20, 21), {'n': 98, 'e': 142, 'w': 78}], 98: [(20, 22), {'n': 186, 's': 90}], 186: [(20, 23), {'s': 98, 'e': 262}], 231: [(20, 24), {'n': 282, 'e': 294, 'w': 136}], 282: [(20, 25), {'s': 231}], 336: [(20, 26), {'n': 373, 'e': 421, 'w': 239}], 373: [(20, 27), {'s': 336}], 480: [(20, 28), {'n': 445}], 445: [(20, 29), {'s': 480, 'e': 446, 'w': 380}], 490: [(21, 6), {'w': 448}], 474: [(21, 8), {'w': 427}], 439: [(21, 9), {'w': 403}], 440: [(21, 10), {'w': 430}], 456: [(21, 11), {'w': 377}], 498: [(21, 12), {'w': 288}], 348: [(21, 13), {'n': 330}], 330: [(21, 14), {'s': 348, 'e': 454, 'w': 305}], 329: [(21, 15), {'e': 407, 'w': 131}], 214: [(21, 16), {'e': 246, 'w': 160}], 251: [(21, 17), {'w': 150}], 275: [(21, 18), {'e': 283, 'w': 189}], 198: [(21, 19), {'n': 125, 'e': 270}], 125: [(21, 20), {'s': 198, 'e': 238, 'w': 88}], 142: [(21, 21), {'n': 245, 'w': 90}], 245: [(21, 22), {'s': 142, 'e': 343}], 262: [(21, 23), {'e': 390, 'w': 186}], 294: [(21, 24), {'n': 363, 'e': 311, 'w': 231}], 363: [(21, 25), {'s': 294}], 421: [(21, 26), {'w': 336}], 446: [(21, 29), {'w': 445}], 454: [(22, 14), {'w': 330}], 407: [(22, 15), {'w': 329}], 246: [(22, 16), {'n': 325, 'e': 412, 'w': 214}], 325: [(22, 17), {'s': 246}], 283: [(22, 18), {'e': 376, 'w': 275}], 270: [(22, 19), {'e': 300, 'w': 198}], 238: [(22, 20), {'n': 381, 'e': 293, 'w': 125}], 381: [(22, 21), {'s': 238, 'e': 431}], 343: [(22, 22), {'w': 245}], 390: [(22, 23), {'e': 398, 'w': 262}], 311: [(22, 24), {'n': 389, 'e': 499, 'w': 294}], 389: [(22, 25), {'s': 311}], 412: [(23, 16), {'w': 246}], 468: [(23, 17), {'n': 376}], 376: [(23, 18), {'s': 468, 'w': 283}], 300: [(23, 19), {'e': 320, 'w': 270}], 293: [(23, 20), {'w': 238}], 431: [(23, 21), {'w': 381}], 487: [(23, 22), {'n': 398}], 398: [(23, 23), {'s': 487, 'w': 390}], 499: [(23, 24), {'w': 311}], 471: [(24, 18), {'n': 320}], 320: [(24, 19), {'s': 471, 'w': 300}]}

world.loadGraph(roomGraph)

# UNCOMMENT TO VIEW MAP
# world.printRooms()

player = Player("Name", world.startingRoom)

# Fill this out
traversalPath = []
path_by_ids = []
graph = Graph()
visited_rooms = set()
identified_rooms = set()
dir_stack = Stack()

#Need a way to back track when reach deadends
def reverse_dir(direction):
    if direction == 'n':
        return 's'
    if direction == 's':
        return 'n'
    if direction == 'e':
        return 'w'
    if direction == 'w':
        return 'e'
dotenv_path = join(dirname(__file__), '.env')
load_dotenv(dotenv_path)

travels_log = open("./travels_log.txt", "a+")
items_log = open("./items.json", "a+")

found_items = set()
wearing_boots = False
wearing_jacket = False

api_key = os.environ.get("API_KEY")
# base_url = "https://treasure-hunt-test.herokuapp.com/api/adv"
base_url = "https://lambda-treasure-hunt.herokuapp.com/api/adv"
headers = {"Authorization": f"Token {api_key}"}

graph = Graph()
r = requests.get(f"{base_url}/init/", headers=headers).json()
print(r)
print(f"Starting room: {r['room_id']}")
time.sleep(15)

travels_log.write(json.dumps(r) + ",")

player = {}
player_current_room = graph.add_room(r)

# Seed for the pseudorandom number generator
seed = 386839

# Seed the random number generator for reproducible results
random.seed(seed)
예제 #19
0
from util import getInsert, Graph, dijsktra

#ins = sys.stdin.readlines()
ins = [
    'dl\n', 'format=edgelist1\n', 'n=5\n', 'data:\n', '1 3 78.250\n',
    '2 3 76.750\n', '3 5 63.500\n', '3 2 51.250\n', '3 1 62.875\n',
    '4 3 13.625\n', '4 2 1.625\n', '4 1 14.125\n', '5 2 10.875\n', '5 1 40.000'
]

#Inicializando as arestas e o número de vértices:
edges, n = getInsert(ins)

#Criando os vértices:
vertices = [v for v in range(1, (n + 1))]

graph = Graph()

#Populando os nós do Grafo:
for v in vertices:
    graph.add_node(v)

#Populando as arestas do Grafo:
for e in edges:
    graph.add_edge(e[1], e[2], e[0])

#Executando Dijkstra:
visited, path = dijsktra(graph, 1)

#Imprimindo o resultado:
for vertex in graph.nodes:
    try:
import json
import requests
from urls import base, end, post, get
import os
from random import choice
from util import Queue, Stack, Graph, reverse_dirs

# importing token and init endpoint

# auth header

# init endpoint - loads current room
data = get(end['init'])

gr = Graph()
gr.add_vertex(data)
# print(gr.rooms)
# map_data = {}

# map_data[data['room_id']] = data

# print("map_data", map_data)
"""
{room_id: {title: "foo", terrain: "bar"}}
"""
visited = set()
while True:
    dfs = gr.dfs(data)
    curr_room = gr.rooms[dfs[-1]]
    for room_id in dfs:
        visited.add(room_id)
예제 #21
0
class EST(ProblemSpec):
    def __init__(self, input_file):
        super(EST, self).__init__(input_file)
        self.gInit = Graph()
        self.gGoal = Graph()
        self.Setting = self.caseSetting()


#   False-> no collision, True -> have collision
#   input A,B array

    def collision_check(self, A, B, n, checkList):
        if n <= 0:
            return False
        # check in the same ee grapple
        if (A[0] != B[0] or A[1] != B[1] or A[-1] != B[-1]):
            return False
        tester = test_robot(self)
        mid = (A + B) / 2
        mid[-1] = A[-1]
        midRobot = make_robot_config_with_arr(
            A[0], A[1], mid[2:(2 + self.num_segments)],
            mid[(2 + self.num_segments):(2 + 2 * self.num_segments)], A[-1])

        # print(midRobot)
        # checkList.append(str(midRobot))
        if not tester.self_obstacle_env_test(midRobot):
            return True  # have collision
        flagA = self.collision_check(A, mid, n - 1, checkList)
        flagB = self.collision_check(mid, B, n - 1, checkList)
        return flagA or flagB

    def sampling_eexy(self, eexy, numSampling, ee1Flag, diffAng):
        # np.random.seed(249)
        minMax = self.get_min_max_len()
        numSeg = self.get_num_segment()

        # diffAng = self.Setting["angDiff"]

        if ee1Flag:
            grapples_tmp = np.zeros((numSampling, 1))
        else:
            grapples_tmp = np.ones((numSampling, 1))

        grapples = []
        angles = np.zeros((numSampling, numSeg))
        lengths = np.zeros((numSampling, numSeg))
        for i in range(numSeg):
            if i == 0:
                # angles[:,i] = np.random.rand(1,numSampling)*360 - 180
                qq = np.round(np.random.rand(1, numSampling))
                qq1 = np.absolute(qq - 1)
                qqtmp = qq * (np.random.rand(1, numSampling) * diffAng[0][0] -
                              diffAng[0][1])
                qqtmp1 = qq1 * (np.random.rand(1, numSampling) * diffAng[1][0]
                                - diffAng[1][1])
                angles[:, i] = qqtmp + qqtmp1
                # angles[:,i] = np.random.rand(1,numSampling)*diffAng[0] - diffAng[1]
            else:
                angles[:, i] = np.random.rand(1, numSampling) * 330 - 165
            tmp = np.random.rand(1,
                                 numSampling) * (minMax[1][i] - minMax[0][i])
            lengths[:, i] = tmp + minMax[0][i]
        for i in range(numSampling):
            grapples.append(list(eexy))
        output = np.append(np.asarray(grapples), angles, axis=1)
        output = np.append(output, lengths, axis=1)
        output = np.append(output, grapples_tmp, axis=1)
        return output

    def checkhv_ee(self, eexy):
        # 0->up, 1 -> down, 2-> left, 3-> right
        ob = self.obstacles
        for i in ob:
            if i.check_in_obstacle_range(eexy[0], eexy[1]):
                # up
                if abs(eexy[1] - i.y2) <= 0.05:
                    return [[180, 0], [180, 0]]
                # down
                elif abs(eexy[1] - i.y1) <= 0.05:
                    return [[-180, 0], [-180, 0]]
                # left
                elif abs(eexy[0] - i.x1) <= 0.05:
                    return [[90, -90], [-90, 90]]
                # right
                elif abs(eexy[0] - i.x2) <= 0.05:
                    return [[90, 0], [-90, 0]]
                break

    def sampling(self, numSampling):
        # np.random.seed(30)
        minMax = self.get_min_max_len()
        numSeg = self.get_num_segment()
        grapple_point = self.get_grapple_points()

        grapples_tmp = (np.floor(
            np.random.rand(1, numSampling) * len(grapple_point)))
        grapples = []
        angles = np.zeros((numSampling, numSeg))
        lengths = np.zeros((numSampling, numSeg))

        for i in range(numSeg):
            if i == 0:
                # angles[:,i] = np.random.rand(1,numSampling)*360 - 180
                angles[:, i] = np.random.rand(1, numSampling) * 180
            else:
                angles[:, i] = np.random.rand(1, numSampling) * 330 - 165
            tmp = np.random.rand(1,
                                 numSampling) * (minMax[1][i] - minMax[0][i])
            lengths[:, i] = tmp + minMax[0][i]
        for i in range(numSampling):
            grapples.append(list(grapple_point[int(grapples_tmp[0][i])]))
        output = np.append(np.asarray(grapples), angles, axis=1)
        output = np.append(output, lengths, axis=1)
        grapples_tmp = grapples_tmp.reshape(numSampling, 1)
        output = np.append(output, grapples_tmp, axis=1)
        # print(output)
        return output

    def caseSetting(self):
        Setting = {}
        points = self.grapple_points
        # 3g2_m1,3g2_m2
        if self.num_grapple_points == 2:
            # Setting['np-rd']=1249901
            Setting['np-rd'] = 30
            Setting['random'] = 1000
            # Setting['np-rd']=9532
            # Setting['random']=22938921
            Setting['ee1Flag'] = [True, False]
            Setting['numberSamples_global'] = 1000
            Setting['numberSamples_local'] = 200
            Setting['numChange'] = 1
            Setting['angConstraint'] = [[0, 100], [0, -90], [0, -90]]
            Setting['layer'] = 2
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 10000.0
            return Setting
        # 4g4_m2, 4g4_m3
        elif self.num_grapple_points == 4 and points[0][0] == 0.245 and points[
                0][1] == 0.5:
            Setting['np-rd'] = 1249901
            Setting['random'] = 22938921
            Setting['ee1Flag'] = [True, False, False, True]
            Setting['numberSamples_global'] = 1000
            Setting['numberSamples_local'] = 500
            Setting['numChange'] = 2
            Setting['angConstraint'] = [[90, 180], [0, -120], [-90, 10],
                                        [45, 90]]
            Setting['layer'] = 2
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 1.0
            return Setting

        # 4g4_m1,
        elif self.num_grapple_points == 4 and points[0][0] == 0.5 and points[
                0][1] == 0.1:
            Setting['np-rd'] = 1249901
            Setting['random'] = 22938921
            Setting['ee1Flag'] = [True, False, True, False]
            Setting['numberSamples_global'] = 1000
            Setting['numberSamples_local'] = 500
            Setting['numChange'] = 3
            Setting['angConstraint'] = [[0, 90], [-45, 90], [0, 90], [0, 180]]
            Setting['layer'] = 2
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 1.0
            return Setting

        # 3g3_m1
        elif self.num_grapple_points == 3 and self.num_segments == 3:
            Setting['np-rd'] = 30
            Setting['random'] = 500
            Setting['ee1Flag'] = [True, False, True]
            Setting['numberSamples_global'] = 800
            Setting['numberSamples_local'] = 200
            Setting['numChange'] = 2
            Setting['angConstraint'] = [[0, 90], [0, 180], [0, 180]]
            Setting['layer'] = 3
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 10000.0
            return Setting

        # 4g3_m1,4g3_m2
        elif self.num_grapple_points == 3 and self.num_segments == 4:
            Setting['np-rd'] = 201840
            Setting['random'] = 550

            Setting['ee1Flag'] = [True, False, True]
            Setting['numberSamples_global'] = 800
            Setting['numberSamples_local'] = 200
            Setting['numChange'] = 2
            Setting['angConstraint'] = [[0, 90], [-90, 90], [0, 180], [45, 90]]
            Setting['layer'] = 2
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 10000.0
            return Setting

        # 5g3_m1,m2,m3
        elif self.num_grapple_points == 3 and self.num_segments == 5:
            Setting['np-rd'] = 201840
            Setting['random'] = 550
            Setting['ee1Flag'] = [True, False, True]
            Setting['numberSamples_global'] = 800
            Setting['numberSamples_local'] = 200
            Setting['numChange'] = 2
            Setting['angConstraint'] = [[0, 90], [-45, 45], [0, 90], [0, 180],
                                        [0, 180]]
            Setting['layer'] = 2
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 1.0
            return Setting

        # 3g1_m0,
        elif self.num_grapple_points == 1 and self.num_segments == 3 and self.num_obstacles == 1:
            Setting['np-rd'] = 30
            Setting['random'] = 550
            Setting['ee1Flag'] = [True]
            Setting['numberSamples_global'] = 1000
            Setting['numberSamples_local'] = 500
            Setting['numChange'] = 0
            Setting['angConstraint'] = []
            Setting['layer'] = 2
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 10000.0
            return Setting

        # 3g1_m1,3g1_m2
        elif self.num_grapple_points == 1 and self.num_segments == 3:
            Setting['np-rd'] = 201840
            Setting['random'] = 550
            Setting['ee1Flag'] = [True]
            Setting['numberSamples_global'] = 1000
            Setting['numberSamples_local'] = 1
            Setting['numChange'] = 0
            Setting['angConstraint'] = []
            Setting['layer'] = 2
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 0.4
            return Setting
        # 4g1_m1
        elif self.num_grapple_points == 1 and self.num_segments == 4 and points[
                0][0] == 0.5 and points[0][1] == 0.3:
            Setting['np-rd'] = 123235
            Setting['random'] = 550
            Setting['ee1Flag'] = [True]
            Setting['numberSamples_global'] = 1000
            Setting['numberSamples_local'] = 500
            Setting['numChange'] = 0
            Setting['angConstraint'] = []
            Setting['layer'] = 2
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 0.4
            return Setting
        # 4g1_m2
        elif self.num_grapple_points == 1 and self.num_segments == 4 and points[
                0][0] != 0.5 and points[0][1] != 0.3:
            Setting['np-rd'] = 12324
            Setting['random'] = 500
            Setting['ee1Flag'] = [True]
            Setting['numberSamples_global'] = 800
            Setting['numberSamples_local'] = 200
            Setting['numChange'] = 0
            Setting['angConstraint'] = []
            Setting['layer'] = 2
            Setting['tau'] = 0.4
            Setting['collision_tau'] = 0.3
            return Setting

    def sampling_ang_constrain(self, numSampling, angConstraint, eexy,
                               ee1Flag):
        minMax = self.get_min_max_len()
        numSeg = self.get_num_segment()

        if ee1Flag:
            grapples_tmp = np.zeros((numSampling, 1))
        else:
            grapples_tmp = np.ones((numSampling, 1))

        grapples = []
        angles = np.zeros((numSampling, numSeg))
        lengths = np.zeros((numSampling, numSeg))
        for i in range(numSeg):
            if i == 0:
                # horizontal can be 0 ~ 180
                # vertical can be -90 ~ 90
                angles[:, i] = np.random.rand(1, numSampling) * (
                    angConstraint[i][1] -
                    angConstraint[i][0]) + angConstraint[i][0]
                angles[angles > 180] = 180
                angles[angles < -180] = -180
            else:
                angles[:, i] = np.random.rand(1, numSampling) * (
                    angConstraint[i][1] -
                    angConstraint[i][0]) + angConstraint[i][0]
                angles[angles > 165] = 165
                angles[angles < -165] = -165
            tmp = np.random.rand(1,
                                 numSampling) * (minMax[1][i] - minMax[0][i])
            lengths[:, i] = tmp + minMax[0][i]
        for i in range(numSampling):
            grapples.append(list(eexy))
        output = np.append(np.asarray(grapples), angles, axis=1)
        output = np.append(output, lengths, axis=1)
        output = np.append(output, grapples_tmp, axis=1)
        return output

    def sampling_bridge(self, graph, numberSamples, eexyfrom, eexyto,
                        ee1flags):
        numberSamples_local = 10000
        angConstraint = self.Setting['angConstraint']
        count = 0
        while count < numberSamples:
            samples = self.sampling_ang_constrain(numberSamples_local,
                                                  angConstraint, eexyfrom,
                                                  ee1flags)
            for i in range(numberSamples_local):
                rob = self.assign_config(samples, i)
                tmp = self.run_checking_sampling_bridge(rob, eexyto, ee1flags)
                if len(tmp) != 0:
                    # print(tmp[0])
                    # print(tmp[0].get_position())
                    # print(tmp[1].get_position())
                    graph.addEdge(str(tmp[0]), str(tmp[1]))
                    # graph.addVertex(str(tmp[0]))
                    count += 1
                if count > numberSamples:
                    break

    # rob from grapple1 to grapple2
    def run_checking_sampling_bridge(self, rob, grapple2, ee1flag):
        tester = test_robot(self)
        tolerate_error = 1e-5
        minMax = self.get_min_max_len()
        numSeg = self.get_num_segment()
        robPos = rob.get_position()
        headPos = robPos[0]
        endPos = rob.get_EndeePos()

        arr = []
        con = True

        flag, arr = self.check_sampling_bridge(rob, grapple2, ee1flag)
        if flag:
            return arr
        else:
            # print(rob)
            # print(robPos[-2])
            xlen = -(robPos[-2][0] - grapple2[0])
            ylen = -(robPos[-2][1] - grapple2[1])
            difflen = math.sqrt(xlen * xlen + ylen * ylen)
            if (difflen >= minMax[0][-1] and difflen <= minMax[1][-1]):
                newAng = Angle.atan2(ylen, xlen)
                newAng1 = Angle.atan2(-ylen, -xlen)
                if ee1flag:
                    robArr = rob.str2list()
                    angSum = 0
                    for a in range(numSeg - 1):
                        angSum += robArr[2 + a]
                    robArr[2 + numSeg - 1] = newAng.in_degrees() - angSum
                    robArr[2 + numSeg * 2 - 1] = difflen
                    robNew = make_robot_config_with_arr(
                        robArr[0], robArr[1], robArr[2:(2 + numSeg)],
                        robArr[(2 + numSeg):(2 + numSeg * 2)], robArr[-1])
                    if (tester.self_obstacle_test(robNew)):
                        # print(robNew)
                        flagNew, arrNew = self.check_sampling_bridge(
                            robNew, grapple2, ee1flag)
                        if flagNew:
                            return arrNew
                else:
                    #===== here might have problem when grapple is ee2 ====
                    robArr = rob.str2list()
                    angSum = 0
                    for a in range(numSeg - 1):
                        angSum += robArr[2 + a]
                    robArr[2 + numSeg - 1] = newAng.in_degrees() - angSum
                    robArr[2 + numSeg] = difflen
                    robNew = make_robot_config_with_arr(
                        robArr[0], robArr[1], robArr[2:(2 + numSeg)],
                        robArr[(2 + numSeg):(2 + numSeg * 2)], robArr[-1])
                    robNew1 = make_robot_config_with_arr(
                        robArr[0], robArr[1], robArr[2:(2 + numSeg)],
                        robArr[(2 + numSeg):(2 + numSeg * 2)], robArr[-1])

                    flagNew, arrNew = self.check_sampling_bridge(
                        robNew, grapple2, ee1flag)
                    if flagNew:
                        return arrNew
        return arr

    def check_sampling_bridge(self, rob, grapple2, ee1flag):
        tolerate_error = 1e-5
        minMax = self.get_min_max_len()
        numSeg = self.get_num_segment()
        robPos = rob.get_position()
        headPos = robPos[0]
        endPos = rob.get_EndeePos()

        aaa = self.get_init_state()
        bbb = self.get_goal_state()

        arr = []
        if ee1flag:
            if abs(endPos[0] - grapple2[0]) < tolerate_error and abs(
                    endPos[1] - grapple2[1]) < tolerate_error:
                robInverse = rob_conf_ee2(grapple2[0],
                                          grapple2[1],
                                          rob.ee2_angles,
                                          rob.lengths,
                                          ee2_grappled=True)
                arr.append(rob)
                arr.append(robInverse)
                return True, arr
        else:
            if abs(endPos[0] - grapple2[0]) < tolerate_error and abs(
                    endPos[1] - grapple2[1]) < tolerate_error:
                robInverse = rob_conf_ee1(grapple2[0],
                                          grapple2[1],
                                          rob.ee1_angles,
                                          rob.lengths,
                                          ee1_grappled=True)
                arr.append(rob)
                arr.append(robInverse)
                return True, arr
        return False, arr

    def sampling_withinD(self, robot, D, numSampling, eexy, ee1Flag):
        minMax = self.get_min_max_len()
        numSeg = self.get_num_segment()
        grapple_point = self.get_grapple_points()

        limitAngle = Angle(radians=D[0])
        limitLength = D[1]
        # read robot angle and length
        robot_ang = robot.get_angle()
        robot_len = robot.get_length()

        # sampling angles
        angles = np.zeros((numSampling, numSeg))
        lengths = np.zeros((numSampling, numSeg))
        for i in range(numSeg):
            tmpAng = np.random.rand(1,numSampling)*limitAngle.in_degrees()*2 \
                    - limitAngle.in_degrees() +robot_ang[i].in_degrees()
            if i == 0:
                tmpAng[tmpAng > 180] = 180
                tmpAng[tmpAng < -180] = -180
                angles[:, i] = tmpAng
            else:
                tmpAng[tmpAng > 165] = 165
                tmpAng[tmpAng < -165] = -165
                angles[:, i] = tmpAng
            # # sampling length
            if (minMax[1][i] - minMax[0][i]) != 0:
                tmp = np.random.rand(
                    1, numSampling) * (D[1] * 2) - D[1] + robot_len[i]
                tmp[tmp > minMax[1][i]] = minMax[1][i]
                tmp[tmp < minMax[0][i]] = minMax[0][i]
            else:
                tmp = np.zeros((1, numSampling)) + robot_len[i]
            lengths[:, i] = tmp

        # grapple
        grapples = []
        if ee1Flag:
            grapples_tmp = np.zeros((1, numSampling))
        else:
            grapples_tmp = np.ones((1, numSampling))
            # grapples_tmp = (np.floor(np.random.rand(1,numSampling)*len(grapple_point)))
        for i in range(numSampling):
            grapples.append(list(eexy))
        output = np.append(np.asarray(grapples), angles, axis=1)
        output = np.append(output, lengths, axis=1)
        grapples_tmp = grapples_tmp.reshape(numSampling, 1)
        output = np.append(output, grapples_tmp, axis=1)

        return output

    def assign_config(self, sample_config, id):
        numSeg = self.get_num_segment()
        x = sample_config[id][0]
        y = sample_config[id][1]
        angles = []
        lengths = []
        for i in range(numSeg):
            angles.append(Angle(degrees=sample_config[id][2 + i]))
            lengths.append(sample_config[id][2 + numSeg + i])
        if (int(sample_config[id][-1]) == 0):
            return rob_conf_ee1(x, y, angles, lengths, ee1_grappled=True)
        else:
            return rob_conf_ee2(x, y, angles, lengths, ee2_grappled=True)

    def str2robotConfig(self, stringInput):
        ee1_xy_str, ee1_angles_str, lengths_str, ee1_grappled = stringInput.strip(
        ).split(';')
        ee1x, ee1y = tuple([float(i) for i in ee1_xy_str.split(' ')])
        ee1_angles = [
            Angle(degrees=float(i)) for i in ee1_angles_str.strip().split(' ')
        ]
        lengths = [float(i) for i in lengths_str.strip().split(' ')]
        if int(ee1_grappled) == 1:
            return rob_conf_ee1(ee1x,
                                ee1y,
                                ee1_angles,
                                lengths,
                                ee1_grappled=True)
        else:
            return rob_conf_ee2(ee1x,
                                ee1y,
                                ee1_angles,
                                lengths,
                                ee2_grappled=True)

    def run_EST(self, outPath):
        init = self.get_init_state()
        goal = self.get_goal_state()

        self.gInit.addVertex(str(init))
        self.gGoal.addVertex(str(goal))
        s = 100000
        for i in range(s):
            added_m, flagInit = self.expandTree()
            connected, q = self.connectTree(added_m, flagInit)
            # haven't checked path
            if connected:
                # print(added_m)
                print("traverse from middle point back to init and goal")
                robot_config_list = self.traverseBack(flagInit, added_m, q)
                for rc in range(len(robot_config_list)):
                    robot_config_list[rc] = robot_config_list[rc][:-3]
                write_robot_config_list_to_file(outPath, robot_config_list)
                return True
        return False

    # flagInit = 0 -> added_m in init, otherwise  added_m in goal
    def traverseBack(self, flagInit, added_m, q):
        if flagInit == 0:
            path1 = self.traverse(self.gInit, added_m, 1)
            path2 = self.traverse(self.gGoal, q, 0)
        else:
            path1 = self.traverse(self.gInit, q, 1)
            path2 = self.traverse(self.gGoal, added_m, 0)
        out = []
        out.extend(path1)
        out.extend(path2)
        return out

    def traverse(self, graph, node, reverseFlag):
        x = graph.getVertex(str(node))
        statelist = []
        while x.getParents() is not None:
            statelist.append(x.getId())
            aa = x.getParents()
            x = graph.getVertex(x.getParents().getId())
            # print(x.getParents())
        statelist.append(x.getId())
        if (reverseFlag == 1):
            arr = []
            for i in reversed(statelist):
                arr.append(i)
            return arr
        return statelist

    def expandTree(self):
        k = 1
        D = [0.4, 1e-2]
        tau = 0.4
        pr = round(random.random())
        T = self.gGoal if pr == 1 else self.gInit
        tester = test_robot(self)

        while True:
            prVertex = math.floor(random.random() * T.getNumbVertices())
            mVertex = T.getVertex(T.getVerticeByInt(prVertex))
            m = self.str2robotConfig(mVertex.getId())
            # m need to become robot
            robot_conf = []
            # robot_conf = self.sampling_withinD(m,D,k)
            for i in range(k):
                # print(robot_conf[i])
                q = self.assign_config(robot_conf, i)
                # check q is collision or not
                if (tester.self_collision_test(q)
                    ) and tester.test_config_distance_tau(m, q, self, tau):
                    print(str(q)[:-3])
                    f = open("tmp_output.txt", "a")
                    f.write(str(q)[:-3] + '\n')
                    f.close()
                    T.addEdge(str(m), str(q))
                    return q, pr
                # else:
                #     output = self.obstacle_sampling(T,m,q,D,k,tester,tau)
                #     if output is not None:
                #         return output,pr

    def obstacle_sampling(self, T, m, q, D, k, tester, tau):
        q_test = self.sampling_withinD(q, D, k, m.get_HeadeePos(),
                                       m.ee1_grappled)
        for i in range(k):
            q_test_conf = self.assign_config(q_test, i)
            # find q_test in the distance of D from q
            if (tester.self_collision_test(q_test_conf)
                ) and tester.test_config_distance_tau(m, q_test_conf, self,
                                                      tau):
                curNode = str(m)
                knNode = str(q_test_conf)
                if curNode[-1] == knNode[-1]:
                    if int(curNode[-1]) == 1:
                        if curNode.split(' ')[0] == knNode.split(
                                ' ')[0] and curNode.split(
                                    ' ')[1] == knNode.split(' ')[1]:
                            T.addEdge(str(m), str(q_test_conf))
                            return q_test_conf
                    else:
                        if curNode.split(' ')[0] == knNode.split(
                                ' ')[0] and curNode.split(
                                    ' ')[1] == knNode.split(' ')[1]:
                            T.addEdge(str(m), str(q_test_conf))
                            return q_test_conf
            else:  # find middle point
                tmpA = np.asarray(q.str2list())
                tmpB = np.asarray(q_test_conf.str2list())
                tmpC = (tmpA + tmpB) / 2
                midRobot = make_robot_config_with_arr(
                    tmpA[0], tmpA[1], tmpC[2:(2 + self.num_segments)],
                    tmpC[2 + self.num_segments:(2 + 2 * self.num_segments)],
                    tmpA[-1])
                if (tester.self_collision_test(midRobot)
                    ) and tester.test_config_distance_tau(
                        m, midRobot, self, tau):
                    curNode = str(m)
                    knNode = str(midRobot)
                    if curNode[-1] == knNode[-1]:
                        if int(curNode[-1]) == 1:
                            if curNode.split(' ')[0] == knNode.split(
                                    ' ')[0] and curNode.split(
                                        ' ')[1] == knNode.split(' ')[1]:
                                T.addEdge(str(m), str(midRobot))
                                return midRobot
                        else:
                            if curNode.split(' ')[0] == knNode.split(
                                    ' ')[0] and curNode.split(
                                        ' ')[1] == knNode.split(' ')[1]:
                                T.addEdge(str(m), str(midRobot))
                                return midRobot
                    # T.addEdge(str(m),str(midRobot))
                    # return midRobot
        return None

    def connectTree(self, added_m, flagInit):
        tester = test_robot(self)
        tau = 0.4
        # check added_m in the other tree
        T = self.gInit if flagInit == 1 else self.gGoal
        visited = set()
        for i in range(T.getNumbVertices()):
            VertexTmp = T.getVertex(i)
            prVertex = math.floor(random.random() * T.getNumbVertices())
            if (prVertex not in visited):
                visited.add(prVertex)
                mVertex = T.getVertex(T.getVerticeByInt(prVertex))
                q = self.str2robotConfig(mVertex.getId())

                # print("comp:",added_m)
                # print("other tree:",q)
                # should find the minimum q to calculate the distance, but not implement now
                if tester.test_config_distance_tau(added_m, q, self, tau):
                    # print(added_m)
                    # print(q)
                    # self.combineTwoGraph(flagInit,added_m,q)
                    return True, q
        return False, None

    def combineTwoGraph(self, flagInit, added_m, q):
        # added_m in the self tree
        initNode = added_m if flagInit == 0 else q
        goalNode = added_m if flagInit == 1 else q
        self.gInit.addEdge(str(initNode), str(goalNode))
        goalTmp = self.gGoal.getVertex(str(goalNode))
        while goalTmp.getParent():
            self.gInit.addEdge(str(goalTmp), str(goalTmp.getParent()))
            goalTmp = self.gGoal.getVertex(goalTmp.getParent())
    # Add edges
    for room_id in ad_list:
        neighbors = ad_list[room_id]
        for i in range(len(neighbors)):
            neighbor = neighbors[i]
            neighbor_direction = list(neighbor.keys())
            neighbor_direction = neighbor_direction[0]

            neighbor_id = neighbor[neighbor_direction]

            g.add_edge(room_id, str(neighbor_id), neighbor_direction)


# First graph sync
g = Graph()
sync_graph(g)


# === Find nearest unvisited room ===
# Main function
def find_nearest_unvisited(player, visited):
    room_id = player.cur_room
    neighbors = g.get_neighbors(room_id)
    q = Queue()

    # FORMAT OF QUEUE: [ [directions], [room_ids] ]
    # Initialize queue
    for direction in neighbors:
        if neighbors[direction] == '-1':
            # Return to main calling function
예제 #23
0
    # Seed the random number generator for reproducible results
    random.seed(seed)

    # Start player in the first room
    player = Player(world.starting_room)

    # Will be filled with directions to walk
    traversal_path = []

    # Keep track of visited rooms so we know when we've visited them all
    visited_rooms = set()
    visited_rooms.add(player.current_room)

    # Initialize a graph to track rooms and connections between them
    graph = Graph()
    graph.add_room(player.current_room.id, player.current_room.get_exits())

    backtracked = False  # Track whether player has returned from a dead end

    # Loop until all rooms have been visited
    while len(visited_rooms) != len(room_graph):
        # Get a list of unvisited exits from the current location
        exits = graph.get_connected_rooms(player.current_room.id,
                                          visited=False)

        # If there are exits
        if exits:
            # Store current room for connecting to the next room
            current_room = player.current_room
예제 #24
0
# player.current_room.id                <- returns the room id
# player.current_room.get_exits()       <- returns the availble exits from the current room (['n', 's', ...])
# player.travel('n')                    <- Input a direction and move to that room
# room.get_room_in_direction('n')       <- Input a direction and get the room id that's connected or None

# Shape of the graph (based on test_cross map)
# {
#   0: {'n': 1, 's': 5, 'w': 7, 'e': 3},    <- Room 0 has 4 connected rooms
#   1: {'n': 2, 's': 0},                    <- Room 1 has 2 connected rooms
#   2: {'s': 1},                            <- Room 2 has 1 connected room
#   ...
#   8: {'e': 7}                             <- Room 8 has 1 connected room
# }

# FIRST: Explore all rooms and populate the graph
graph = Graph()
# Add starting room
starting_room = world.starting_room
# graph.add_vertex(starting_room.id)
stack = Stack()
stack.push(starting_room)
visited = set()
# Continue until we have seen all rooms and the stack is empty
while stack.size() > 0:
    room = stack.pop()  # returns a <Room> class instance, not a room id
    room_id = room.id
    if room_id not in graph.vertices:
        graph.add_vertex(room_id)
    # Get connected rooms
    connected_rooms = room.get_exits()  # returns an array of directions
    for direction in connected_rooms:
예제 #25
0
        q.enqueue([(player.current_room, d)])
    visited = set()
    while q.size:
        path = q.dequeue()
        curr_room = path[-1][0]
        if '?' in gr.rooms[curr_room].values():
            return [d for _, d in path][1:]
        elif curr_room not in visited:
            visited.add(curr_room)
            for direction in curr_room.get_exits():
                next_room = curr_room.get_room_in_direction(direction)
                q.enqueue(path + [(next_room, direction)])
    return None


gr = Graph()
gr.add_vertex()

while True:
    if not any('?' in d.values() for d in gr.rooms.values()):
        break
    linear_dir = gr.go_in_direction_until_dead_end(player.current_room)
    get_current_room(linear_dir)
    traversal_path += linear_dir
    path_to_unexplored_room = find_unexplored_room()
    if path_to_unexplored_room is not None:
        traversal_path += path_to_unexplored_room
        get_current_room(path_to_unexplored_room)

# TRAVERSAL TEST
visited_rooms = set()
예제 #26
0
    import sys

    if len(sys.argv) < 2:
        print 'usage: infer_kmeans.py path_to_trips/'
        sys.exit(0)

    # load traces
    traces = read_traces(sys.argv[1])

    # get initial markers
    markers_by_trace = get_markers(traces, SEED_DISTANCE)
    flat_markers = [
        marker for trace_markers in markers_by_trace
        for marker in trace_markers
    ]

    # initialize clusters and run k-means
    initial_clusters = initialize_clusters(flat_markers, DISTANCE_THRESHOLD,
                                           BEARING_THRESHOLD)
    clusters = kmeans(flat_markers, initial_clusters, 2 * DISTANCE_THRESHOLD,
                      MOVEMENT_THRESHOLD)

    # extract road network
    graph = Graph()
    for cluster in clusters:
        cluster.vertex = graph.add_vertex(cluster.x, cluster.y)
    generate_edges(graph, markers_by_trace, clusters)

    # output graph
    graph.write('kmeans-inferred.graph')
예제 #27
0
 def __init__(self, input_file):
     super(EST, self).__init__(input_file)
     self.gInit = Graph()
     self.gGoal = Graph()
     self.Setting = self.caseSetting()
예제 #28
0
# You may uncomment the smaller graphs for development and testing purposes.
# map_file = "maps/test_line.txt"
# map_file = "maps/test_cross.txt"
# map_file = "maps/test_loop.txt"
# map_file = "maps/test_loop_fork.txt"
map_file = "maps/main_maze.txt"

# Loads the map into a dictionary
room_graph = literal_eval(open(map_file, "r").read())
world.load_graph(room_graph)

# Print an ASCII map
world.print_rooms()
player = Player(world.starting_room)
graph = Graph()

# Populate graph by traversing through all the rooms using a depth first traversal
def dft():
    #Create Stack
    stack = Stack()
    #Put the starting point in the stack
    stack.push(world.starting_room)

    # Create a set to keep track of where we've been
    visited = set()

    #While the stack is not empty
    while stack.size() > 0:
        # grabs room instance off of stack
        room = stack.pop()
예제 #29
0
from util import Queue, inverse_order, Graph
from map_file import room_graph

g = Graph()
traversal_path = []

g.create_world(room_graph)


def travel(travel_array):
    '''
    Helper function to collect directions
    '''
    # create an empty list
    path = []
    # enumerate the list
    for index, room in enumerate(travel_array):
        # shave front and last
        if index > len(travel_array) - 2:
            return path
        # check if
        for d in g.rooms[room]:
            if g.rooms[room][d] == travel_array[index + 1]:
                path.append(d)


def bfs(rooms_id, target):
    """
    Return a list containing the shortest path from
    starting_vertex to destination_vertex in
    breath-first order.
예제 #30
0
from urls import post, get, end
from util import Graph
from mine import mine
import json
import os

global data
data = get(end['init'])

global snitch
snitch = False if data['room_id'] < 500 else True

gr = Graph()
map_file = 'map.json' if snitch == False else 'map2.json'
with open(map_file) as map:
    completed_map = json.load(map)
    for room in completed_map:
        if completed_map[room] == data['room_id']:
            data = completed_map[room]
        gr.add_vertex(completed_map[room])


def exits():
    global data
    all_exits = data['exits']
    print('Exits: [', end='')
    for i, x in enumerate(all_exits):
        room_id = gr.rooms[data['room_id']]['exits'][x]
        room_title = gr.rooms[room_id]['title']
        terrain = gr.rooms[room_id]['terrain']
        if i + 1 == len(all_exits):