예제 #1
0
def create_output_func(dataset, x, y, drop, input, output_layer, batch_size):
    name = 'output'
    #Compability with create_theano_func
    data = Params({'set': {'output': dataset}})
    output = (output_layer.output, y)
    return create_theano_func(name, data, x, y, drop, input, output,
                              batch_size)
예제 #2
0
    def setup(self):
        """
        Builds vec_cn modules to test if they 
        """
        params = Params("source/tests/learned_cn/params.json")
        A = torch.tensor([[0., 1., 0.], [1., 0., 1.], [0., 1., 0.]])

        self.vec_cn = LCIModule(params, A.numpy())
예제 #3
0
    def __init__(self, expbase, cmdparams=None):
        """cryodata is a CryoData instance. 
        expbase is a path to the base of folder where this experiment's files
        will be stored.  The folder above expbase will also be searched
        for .params files. These will be loaded first."""
        BackgroundWorker.__init__(self)

        # Create a background thread which handles IO
        self.io_queue = Queue()
        self.io_thread = Thread(target=self.ioworker)
        self.io_thread.daemon = True
        self.io_thread.start()

        # General setup ----------------------------------------------------
        self.expbase = expbase
        self.outbase = None

        # Paramter setup ---------------------------------------------------
        # search above expbase for params files
        _,_,filenames = os.walk(opj(expbase,'../')).next()
        self.paramfiles = [opj(opj(expbase,'../'), fname) \
                           for fname in filenames if fname.endswith('.params')]
        # search expbase for params files
        _,_,filenames = os.walk(opj(expbase)).next()
        self.paramfiles += [opj(expbase,fname)  \
                            for fname in filenames if fname.endswith('.params')]
        if 'local.params' in filenames:
            self.paramfiles += [opj(expbase,'local.params')]
        # load parameter files
        self.params = Params(self.paramfiles)
        self.cparams = None
        
        if cmdparams is not None:
            # Set parameter specified on the command line
            for k,v in cmdparams.iteritems():
                self.params[k] = v
                
        # Dataset setup -------------------------------------------------------
        self.imgpath = self.params['inpath']
        psize = self.params['resolution']
        if not isinstance(self.imgpath,list):
            imgstk = MRCImageStack(self.imgpath,psize)
        else:
            imgstk = CombinedImageStack([MRCImageStack(cimgpath,psize) for cimgpath in self.imgpath])

        if self.params.get('float_images',True):
            imgstk.float_images()
        
        self.ctfpath = self.params['ctfpath']
        mscope_params = self.params['microscope_params']
         
        if not isinstance(self.ctfpath,list):
            ctfstk = CTFStack(self.ctfpath,mscope_params)
        else:
            ctfstk = CombinedCTFStack([CTFStack(cctfpath,mscope_params) for cctfpath in self.ctfpath])


        self.cryodata = CryoDataset(imgstk,ctfstk)
        self.cryodata.compute_noise_statistics()
        if self.params.get('window_images',True):
            imgstk.window_images()
        minibatch_size = self.params['minisize']
        testset_size = self.params['test_imgs']
        partition = self.params.get('partition',0)
        num_partitions = self.params.get('num_partitions',1)
        seed = self.params['random_seed']
        if isinstance(partition,str):
            partition = eval(partition)
        if isinstance(num_partitions,str):
            num_partitions = eval(num_partitions)
        if isinstance(seed,str):
            seed = eval(seed)
        self.cryodata.divide_dataset(minibatch_size,testset_size,partition,num_partitions,seed)
        
        self.cryodata.set_datasign(self.params.get('datasign','auto'))
        if self.params.get('normalize_data',True):
            self.cryodata.normalize_dataset()

        self.voxel_size = self.cryodata.pixel_size


        # Iterations setup -------------------------------------------------
        self.iteration = 0 
        self.tic_epoch = None
        self.num_data_evals = 0
        self.eval_params()

        outdir = self.cparams.get('outdir',None)
        if outdir is None:
            if self.cparams.get('num_partitions',1) > 1:
                outdir = 'partition{0}'.format(self.cparams['partition'])
            else:
                outdir = ''
        self.outbase = opj(self.expbase,outdir)
        if not os.path.isdir(self.outbase):
            os.makedirs(self.outbase) 

        # Output setup -----------------------------------------------------
        self.ostream = OutputStream(opj(self.outbase,'stdout'))

        self.ostream(80*"=")
        self.ostream("Experiment: " + expbase + \
                     "    Kernel: " + self.params['kernel'])
        self.ostream("Started on " + socket.gethostname() + \
                     "    At: " + time.strftime('%B %d %Y: %I:%M:%S %p'))
        self.ostream("Git SHA1: " + gitutil.git_get_SHA1())
        self.ostream(80*"=")
        gitutil.git_info_dump(opj(self.outbase, 'gitinfo'))
        self.startdatetime = datetime.now()


        # for diagnostics and parameters
        self.diagout = Output(opj(self.outbase, 'diag'),runningout=False)
        # for stats (per image etc)
        self.statout = Output(opj(self.outbase, 'stat'),runningout=True)
        # for likelihoods of individual images
        self.likeout = Output(opj(self.outbase, 'like'),runningout=False)

        self.img_likes = n.empty(self.cryodata.N_D)
        self.img_likes[:] = n.inf

        # optimization state vars ------------------------------------------
        init_model = self.cparams.get('init_model',None)
        if init_model is not None:
            filename = init_model
            if filename.upper().endswith('.MRC'):
                M = readMRC(filename)
            else:
                with open(filename) as fp:
                    M = cPickle.load(fp)
                    if type(M)==list:
                        M = M[-1]['M'] 
            if M.shape != 3*(self.cryodata.N,):
                M = cryoem.resize_ndarray(M,3*(self.cryodata.N,),axes=(0,1,2))
        else:
            init_seed = self.cparams.get('init_random_seed',0)  + self.cparams.get('partition',0)
            print "Randomly generating initial density (init_random_seed = {0})...".format(init_seed), ; sys.stdout.flush()
            tic = time.time()
            M = cryoem.generate_phantom_density(self.cryodata.N, 0.95*self.cryodata.N/2.0, \
                                                5*self.cryodata.N/128.0, 30, seed=init_seed)
            print "done in {0}s".format(time.time() - tic)

        tic = time.time()
        print "Windowing and aligning initial density...", ; sys.stdout.flush()
        # window the initial density
        wfunc = self.cparams.get('init_window','circle')
        cryoem.window(M,wfunc)

        # Center and orient the initial density
        cryoem.align_density(M)
        print "done in {0:.2f}s".format(time.time() - tic)

        # apply the symmetry operator
        init_sym = get_symmetryop(self.cparams.get('init_symmetry',self.cparams.get('symmetry',None)))
        if init_sym is not None:
            tic = time.time()
            print "Applying symmetry operator...", ; sys.stdout.flush()
            M = init_sym.apply(M)
            print "done in {0:.2f}s".format(time.time() - tic)

        tic = time.time()
        print "Scaling initial model...", ; sys.stdout.flush()
        modelscale = self.cparams.get('modelscale','auto')
        mleDC, _, mleDC_est_std = self.cryodata.get_dc_estimate()
        if modelscale == 'auto':
            # Err on the side of a weaker prior by using a larger value for modelscale
            modelscale = (n.abs(mleDC) + 2*mleDC_est_std)/self.cryodata.N
            print "estimated modelscale = {0:.3g}...".format(modelscale), ; sys.stdout.flush()
            self.params['modelscale'] = modelscale
            self.cparams['modelscale'] = modelscale
        M *= modelscale/M.sum()
        print "done in {0:.2f}s".format(time.time() - tic)
        if mleDC_est_std/n.abs(mleDC) > 0.05:
            print "  WARNING: the DC component estimate has a high relative variance, it may be inaccurate!"
        if ((modelscale*self.cryodata.N - n.abs(mleDC)) / mleDC_est_std) > 3:
            print "  WARNING: the selected modelscale value is more than 3 std devs different than the estimated one.  Be sure this is correct."

        self.M = n.require(M,dtype=density.real_t)
        self.fM = density.real_to_fspace(M)
        self.dM = density.zeros_like(self.M)

        self.step = eval(self.cparams['optim_algo'])
        self.step.setup(self.cparams, self.diagout, self.statout, self.ostream)

        # Objective function setup --------------------------------------------
        param_type = self.cparams.get('parameterization','real')
        cplx_param = param_type in ['complex','complex_coeff','complex_herm_coeff']
        self.like_func = eval_objective(self.cparams['likelihood'])
        self.prior_func = eval_objective(self.cparams['prior'])

        if self.cparams.get('penalty',None) is not None:
            self.penalty_func = eval_objective(self.cparams['penalty'])
            prior_func = SumObjectives(self.prior_func.fspace, \
                                       [self.penalty_func,self.prior_func], None)
        else:
            prior_func = self.prior_func

        self.obj = SumObjectives(cplx_param,
                                 [self.like_func,prior_func], [None,None])
        self.obj.setup(self.cparams, self.diagout, self.statout, self.ostream)
        self.obj.set_dataset(self.cryodata)
        self.obj_wrapper = ObjectiveWrapper(param_type)

        self.last_save = time.time()
        
        self.logpost_history = FiniteRunningSum()
        self.like_history = FiniteRunningSum()

        # Importance Samplers -------------------------------------------------
        self.is_sym = get_symmetryop(self.cparams.get('is_symmetry',self.cparams.get('symmetry',None)))
        self.sampler_R = FixedFisherImportanceSampler('_R',self.is_sym)
        self.sampler_I = FixedFisherImportanceSampler('_I')
        self.sampler_S = FixedGaussianImportanceSampler('_S')
        self.like_func.set_samplers(sampler_R=self.sampler_R,sampler_I=self.sampler_I,sampler_S=self.sampler_S)
예제 #4
0
class CryoOptimizer(BackgroundWorker):
    def outputbatchinfo(self,batch,res,logP,prefix,name):
        diag = {}
        stat = {}
        like = {}
        
        N_M = batch['N_M']
        cepoch = self.cryodata.get_epoch(frac=True)
        epoch = self.cryodata.get_epoch()
        num_data = self.cryodata.N_D_Train
        sigma = n.sqrt(n.mean(res['Evar_like']))
        sigma_prior = n.sqrt(n.mean(res['Evar_prior']))
        
        self.ostream('  {0} Batch:'.format(name))

        for suff in ['R','I','S']:
            diag[prefix+'_CV2_'+suff] = res['CV2_'+suff]

        diag[prefix+'_idxs'] = batch['img_idxs']
        diag[prefix+'_sigma2_est'] = res['sigma2_est']
        diag[prefix+'_correlation'] = res['correlation']
        diag[prefix+'_power'] = res['power']

#         self.ostream("    RMS Error: %g" % (sigma/n.sqrt(self.cryodata.noise_var)))
        self.ostream("    RMS Error: %g, Signal: %g" % (sigma/n.sqrt(self.cryodata.noise_var), \
                                                        sigma_prior/n.sqrt(self.cryodata.noise_var)))
        self.ostream("    Effective # of R / I / S:     %.2f / %.2f / %.2f " %\
                      (n.mean(res['CV2_R']), n.mean(res['CV2_I']),n.mean(res['CV2_S'])))

        # Importance Sampling Statistics
        is_speedups = []
        for suff in ['R','I','S','Total']:
            if self.cparams.get('is_on_'+suff,False) or (suff == 'Total' and len(is_speedups) > 0):
                spdup = N_M/res['N_' + suff + '_sampled_total']
                is_speedups.append((suff,spdup,n.mean(res['N_'+suff+'_sampled']),res['N_'+suff]))
                stat[prefix+'_is_speedup_'+suff] = [spdup]
            else:
                stat[prefix+'_is_speedup_'+suff] = [1.0]

        if len(is_speedups) > 0:
            lblstr = is_speedups[0][0]
            numstr = '%.2f (%d of %d)' % is_speedups[0][1:]
            for i in range(1,len(is_speedups)):
                lblstr += ' / ' + is_speedups[i][0]
                numstr += ' / %.2f (%d of %d)' % is_speedups[i][1:]
            
            self.ostream("    IS Speedup {0}: {1}".format(lblstr,numstr))

        stat[prefix+'_sigma'] = [sigma]
        stat[prefix+'_logp'] = [logP]
        stat[prefix+'_like'] = [res['L']]
        stat[prefix+'_num_data'] = [num_data]
        stat[prefix+'_num_data_evals'] = [self.num_data_evals]
        stat[prefix+'_iteration'] = [self.iteration]
        stat[prefix+'_epoch'] = [epoch]
        stat[prefix+'_cepoch'] = [cepoch],
        stat[prefix+'_time'] = [time.time()]

        for k,v in res['like_timing'].iteritems():
            stat[prefix+'_like_timing_'+k] = [v]
        
        Idxs = batch['img_idxs']
        self.img_likes[Idxs] = res['like']
        like['img_likes'] = self.img_likes
        like['train_idxs'] = self.cryodata.train_idxs
        like['test_idxs'] = self.cryodata.test_idxs
        keepidxs = self.cryodata.train_idxs if prefix == 'train' else self.cryodata.test_idxs
        keeplikes = self.img_likes[keepidxs]
        keeplikes = keeplikes[n.isfinite(keeplikes)]
        quants = n.percentile(keeplikes, range(0,101))
        stat[prefix+'_full_like_quantiles'] = [quants]
        quants = n.percentile(res['like'], range(0,101))
        stat[prefix+'_mini_like_quantiles'] = [quants]
        stat[prefix+'_num_like_quantiles'] = [len(keeplikes)]

        self.diagout.output(**diag)
        self.statout.output(**stat)
        self.likeout.output(**like)

    def ioworker(self):
        while True:
            iotype,fname,data = self.io_queue.get()
            
            try:
                if iotype == 'mrc':
                    writeMRC(fname,*data)
                elif iotype == 'pkl':
                    with open(fname, 'wb') as f:
                        cPickle.dump(data, f, protocol=-1)
                elif iotype == 'cp':
                    copyfile(fname,data)
            except:
                print "ERROR DUMPING {0}: {1}".format(fname, sys.exc_info()[0])
                
            self.io_queue.task_done()
        
    def __init__(self, expbase, cmdparams=None):
        """cryodata is a CryoData instance. 
        expbase is a path to the base of folder where this experiment's files
        will be stored.  The folder above expbase will also be searched
        for .params files. These will be loaded first."""
        BackgroundWorker.__init__(self)

        # Create a background thread which handles IO
        self.io_queue = Queue()
        self.io_thread = Thread(target=self.ioworker)
        self.io_thread.daemon = True
        self.io_thread.start()

        # General setup ----------------------------------------------------
        self.expbase = expbase
        self.outbase = None

        # Paramter setup ---------------------------------------------------
        # search above expbase for params files
        _,_,filenames = os.walk(opj(expbase,'../')).next()
        self.paramfiles = [opj(opj(expbase,'../'), fname) \
                           for fname in filenames if fname.endswith('.params')]
        # search expbase for params files
        _,_,filenames = os.walk(opj(expbase)).next()
        self.paramfiles += [opj(expbase,fname)  \
                            for fname in filenames if fname.endswith('.params')]
        if 'local.params' in filenames:
            self.paramfiles += [opj(expbase,'local.params')]
        # load parameter files
        self.params = Params(self.paramfiles)
        self.cparams = None
        
        if cmdparams is not None:
            # Set parameter specified on the command line
            for k,v in cmdparams.iteritems():
                self.params[k] = v
                
        # Dataset setup -------------------------------------------------------
        self.imgpath = self.params['inpath']
        psize = self.params['resolution']
        if not isinstance(self.imgpath,list):
            imgstk = MRCImageStack(self.imgpath,psize)
        else:
            imgstk = CombinedImageStack([MRCImageStack(cimgpath,psize) for cimgpath in self.imgpath])

        if self.params.get('float_images',True):
            imgstk.float_images()
        
        self.ctfpath = self.params['ctfpath']
        mscope_params = self.params['microscope_params']
         
        if not isinstance(self.ctfpath,list):
            ctfstk = CTFStack(self.ctfpath,mscope_params)
        else:
            ctfstk = CombinedCTFStack([CTFStack(cctfpath,mscope_params) for cctfpath in self.ctfpath])


        self.cryodata = CryoDataset(imgstk,ctfstk)
        self.cryodata.compute_noise_statistics()
        if self.params.get('window_images',True):
            imgstk.window_images()
        minibatch_size = self.params['minisize']
        testset_size = self.params['test_imgs']
        partition = self.params.get('partition',0)
        num_partitions = self.params.get('num_partitions',1)
        seed = self.params['random_seed']
        if isinstance(partition,str):
            partition = eval(partition)
        if isinstance(num_partitions,str):
            num_partitions = eval(num_partitions)
        if isinstance(seed,str):
            seed = eval(seed)
        self.cryodata.divide_dataset(minibatch_size,testset_size,partition,num_partitions,seed)
        
        self.cryodata.set_datasign(self.params.get('datasign','auto'))
        if self.params.get('normalize_data',True):
            self.cryodata.normalize_dataset()

        self.voxel_size = self.cryodata.pixel_size


        # Iterations setup -------------------------------------------------
        self.iteration = 0 
        self.tic_epoch = None
        self.num_data_evals = 0
        self.eval_params()

        outdir = self.cparams.get('outdir',None)
        if outdir is None:
            if self.cparams.get('num_partitions',1) > 1:
                outdir = 'partition{0}'.format(self.cparams['partition'])
            else:
                outdir = ''
        self.outbase = opj(self.expbase,outdir)
        if not os.path.isdir(self.outbase):
            os.makedirs(self.outbase) 

        # Output setup -----------------------------------------------------
        self.ostream = OutputStream(opj(self.outbase,'stdout'))

        self.ostream(80*"=")
        self.ostream("Experiment: " + expbase + \
                     "    Kernel: " + self.params['kernel'])
        self.ostream("Started on " + socket.gethostname() + \
                     "    At: " + time.strftime('%B %d %Y: %I:%M:%S %p'))
        self.ostream("Git SHA1: " + gitutil.git_get_SHA1())
        self.ostream(80*"=")
        gitutil.git_info_dump(opj(self.outbase, 'gitinfo'))
        self.startdatetime = datetime.now()


        # for diagnostics and parameters
        self.diagout = Output(opj(self.outbase, 'diag'),runningout=False)
        # for stats (per image etc)
        self.statout = Output(opj(self.outbase, 'stat'),runningout=True)
        # for likelihoods of individual images
        self.likeout = Output(opj(self.outbase, 'like'),runningout=False)

        self.img_likes = n.empty(self.cryodata.N_D)
        self.img_likes[:] = n.inf

        # optimization state vars ------------------------------------------
        init_model = self.cparams.get('init_model',None)
        if init_model is not None:
            filename = init_model
            if filename.upper().endswith('.MRC'):
                M = readMRC(filename)
            else:
                with open(filename) as fp:
                    M = cPickle.load(fp)
                    if type(M)==list:
                        M = M[-1]['M'] 
            if M.shape != 3*(self.cryodata.N,):
                M = cryoem.resize_ndarray(M,3*(self.cryodata.N,),axes=(0,1,2))
        else:
            init_seed = self.cparams.get('init_random_seed',0)  + self.cparams.get('partition',0)
            print "Randomly generating initial density (init_random_seed = {0})...".format(init_seed), ; sys.stdout.flush()
            tic = time.time()
            M = cryoem.generate_phantom_density(self.cryodata.N, 0.95*self.cryodata.N/2.0, \
                                                5*self.cryodata.N/128.0, 30, seed=init_seed)
            print "done in {0}s".format(time.time() - tic)

        tic = time.time()
        print "Windowing and aligning initial density...", ; sys.stdout.flush()
        # window the initial density
        wfunc = self.cparams.get('init_window','circle')
        cryoem.window(M,wfunc)

        # Center and orient the initial density
        cryoem.align_density(M)
        print "done in {0:.2f}s".format(time.time() - tic)

        # apply the symmetry operator
        init_sym = get_symmetryop(self.cparams.get('init_symmetry',self.cparams.get('symmetry',None)))
        if init_sym is not None:
            tic = time.time()
            print "Applying symmetry operator...", ; sys.stdout.flush()
            M = init_sym.apply(M)
            print "done in {0:.2f}s".format(time.time() - tic)

        tic = time.time()
        print "Scaling initial model...", ; sys.stdout.flush()
        modelscale = self.cparams.get('modelscale','auto')
        mleDC, _, mleDC_est_std = self.cryodata.get_dc_estimate()
        if modelscale == 'auto':
            # Err on the side of a weaker prior by using a larger value for modelscale
            modelscale = (n.abs(mleDC) + 2*mleDC_est_std)/self.cryodata.N
            print "estimated modelscale = {0:.3g}...".format(modelscale), ; sys.stdout.flush()
            self.params['modelscale'] = modelscale
            self.cparams['modelscale'] = modelscale
        M *= modelscale/M.sum()
        print "done in {0:.2f}s".format(time.time() - tic)
        if mleDC_est_std/n.abs(mleDC) > 0.05:
            print "  WARNING: the DC component estimate has a high relative variance, it may be inaccurate!"
        if ((modelscale*self.cryodata.N - n.abs(mleDC)) / mleDC_est_std) > 3:
            print "  WARNING: the selected modelscale value is more than 3 std devs different than the estimated one.  Be sure this is correct."

        self.M = n.require(M,dtype=density.real_t)
        self.fM = density.real_to_fspace(M)
        self.dM = density.zeros_like(self.M)

        self.step = eval(self.cparams['optim_algo'])
        self.step.setup(self.cparams, self.diagout, self.statout, self.ostream)

        # Objective function setup --------------------------------------------
        param_type = self.cparams.get('parameterization','real')
        cplx_param = param_type in ['complex','complex_coeff','complex_herm_coeff']
        self.like_func = eval_objective(self.cparams['likelihood'])
        self.prior_func = eval_objective(self.cparams['prior'])

        if self.cparams.get('penalty',None) is not None:
            self.penalty_func = eval_objective(self.cparams['penalty'])
            prior_func = SumObjectives(self.prior_func.fspace, \
                                       [self.penalty_func,self.prior_func], None)
        else:
            prior_func = self.prior_func

        self.obj = SumObjectives(cplx_param,
                                 [self.like_func,prior_func], [None,None])
        self.obj.setup(self.cparams, self.diagout, self.statout, self.ostream)
        self.obj.set_dataset(self.cryodata)
        self.obj_wrapper = ObjectiveWrapper(param_type)

        self.last_save = time.time()
        
        self.logpost_history = FiniteRunningSum()
        self.like_history = FiniteRunningSum()

        # Importance Samplers -------------------------------------------------
        self.is_sym = get_symmetryop(self.cparams.get('is_symmetry',self.cparams.get('symmetry',None)))
        self.sampler_R = FixedFisherImportanceSampler('_R',self.is_sym)
        self.sampler_I = FixedFisherImportanceSampler('_I')
        self.sampler_S = FixedGaussianImportanceSampler('_S')
        self.like_func.set_samplers(sampler_R=self.sampler_R,sampler_I=self.sampler_I,sampler_S=self.sampler_S)

    def eval_params(self):
        # cvars are state variables that can be used in parameter expressions
        cvars = {}
        cvars['cepoch'] = self.cryodata.get_epoch(frac=True)
        cvars['epoch'] = self.cryodata.get_epoch()
        cvars['iteration'] = self.iteration
        cvars['num_data'] = self.cryodata.N_D_Train
        cvars['num_batches'] = self.cryodata.N_batches
        cvars['noise_std'] = n.sqrt(self.cryodata.noise_var)
        cvars['data_std'] = n.sqrt(self.cryodata.data_var)
        cvars['voxel_size'] = self.voxel_size
        cvars['pixel_size'] = self.cryodata.pixel_size
        cvars['prev_max_frequency'] = self.cparams['max_frequency'] if self.cparams is not None else None

        # prelist fields are parameters that can be used in evaluating other parameter
        # expressions, they can only depend on values defined in cvars
        prelist = ['max_frequency']
        
        skipfields = set(['inpath','ctfpath'])

        cvars = self.params.partial_evaluate(prelist,**cvars)
        if self.cparams is None:
            self.max_frequency_changes = 0
        else:
            self.max_frequency_changes += cvars['max_frequency'] != cvars['prev_max_frequency']
                
        cvars['num_max_frequency_changes'] =  self.max_frequency_changes
        cvars['max_frequency_changed'] = cvars['max_frequency'] != cvars['prev_max_frequency']
        self.cparams = self.params.evaluate(skipfields,**cvars)

        self.cparams['exp_path'] = self.expbase
        self.cparams['out_path'] = self.outbase

        if 'name' not in self.cparams:
            self.cparams['name'] = '{0} - {1} - {2} ({3})'.format(self.cparams['dataset_name'], self.cparams['prior_name'], self.cparams['optimizer_name'], self.cparams['kernel'])

    def run(self):
        while self.dowork(): pass
        print "Waiting for IO queue to clear...",  ; sys.stdout.flush()
        self.io_queue.join()
        print "done."  ; sys.stdout.flush()

    def begin(self):
        BackgroundWorker.begin(self)

    def end(self):
        BackgroundWorker.end(self)

    def dowork(self):
        """Do one atom of work. I.E. Execute one minibatch"""

        timing = {}
        # Time each minibatch
        tic_mini = time.time()

        self.iteration += 1

        # Fetch the current batches
        trainbatch = self.cryodata.get_next_minibatch(self.cparams.get('shuffle_minibatches',True))

        # Get the current epoch
        cepoch = self.cryodata.get_epoch(frac=True)
        epoch = self.cryodata.get_epoch()
        num_data = self.cryodata.N_D_Train

        # Evaluate the parameters
        self.eval_params()
        timing['setup'] = time.time() - tic_mini

        # Do hyperparameter learning
        if self.cparams.get('learn_params',False):
            tic_learn = time.time()
            if self.cparams.get('learn_prior_params',True):
                tic_learn_prior = time.time()
                self.prior_func.learn_params(self.params, self.cparams, M=self.M, fM=self.fM)
                timing['learn_prior'] = time.time() - tic_learn_prior 

            if self.cparams.get('learn_likelihood_params',True):
                tic_learn_like = time.time()
                self.like_func.learn_params(self.params, self.cparams, M=self.M, fM=self.fM)
                timing['learn_like'] = time.time() - tic_learn_like
                
            if self.cparams.get('learn_prior_params',True) or self.cparams.get('learn_likelihood_params',True):
                timing['learn_total'] = time.time() - tic_learn   

        # Time each epoch
        if self.tic_epoch == None:
            self.ostream("Epoch: %d" % epoch)
            self.tic_epoch = (tic_mini,epoch)
        elif self.tic_epoch[1] != epoch:
            self.ostream("Epoch Total - %.6f seconds " % \
                         (tic_mini - self.tic_epoch[0]))
            self.tic_epoch = (tic_mini,epoch)

        sym = get_symmetryop(self.cparams.get('symmetry',None))
        if sym is not None:
            self.obj.ws[1] = 1.0/sym.get_order()

        tic_mstats = time.time()
        self.ostream(self.cparams['name']," Iteration:", self.iteration,\
                     " Epoch:", epoch, " Host:", socket.gethostname())

        # Compute density statistics
        N = self.cryodata.N
        M_sum = self.M.sum(dtype=n.float64)
        M_zeros = (self.M == 0).sum()
        M_mean = M_sum/N**3
        M_max = self.M.max()
        M_min = self.M.min()
#         self.ostream("  Density (min/max/avg/sum/zeros): " +
#                      "%.2e / %.2e / %.2e / %.2e / %g " %
#                      (M_min, M_max, M_mean, M_sum, M_zeros))
        self.statout.output(total_density=[M_sum],
                            avg_density=[M_mean],
                            nonzero_density=[M_zeros],
                            max_density=[M_max],
                            min_density=[M_min])
        timing['density_stats'] = time.time() - tic_mstats

        # evaluate test batch if requested
        if self.iteration <= 1 or self.cparams.get('evaluate_test_set',self.iteration%5):
            tic_test = time.time()
            testbatch = self.cryodata.get_testbatch()

            self.obj.set_data(self.cparams,testbatch)
            testLogP, res_test = self.obj.eval(M=self.M, fM=self.fM,
                                               compute_gradient=False)

            self.outputbatchinfo(testbatch, res_test, testLogP, 'test', 'Test')
            timing['test_batch'] = time.time() - tic_test
        else:
            testLogP, res_test = None, None

        # setup the wrapper for the objective function 
        tic_objsetup = time.time()
        self.obj.set_data(self.cparams,trainbatch)
        self.obj_wrapper.set_objective(self.obj)
        x0 = self.obj_wrapper.set_density(self.M,self.fM)
        evalobj = self.obj_wrapper.eval_obj
        timing['obj_setup'] = time.time() - tic_objsetup

        # Get step size
        self.num_data_evals += trainbatch['N_M']  # at least one gradient
        tic_objstep = time.time()
        trainLogP, dlogP, v, res_train, extra_num_data = self.step.do_step(x0,
                                                         self.cparams,
                                                         self.cryodata,
                                                         evalobj,
                                                         batch=trainbatch)

        # Apply the step
        x = x0 + v
        timing['step'] = time.time() - tic_objstep

        # Convert from parameters to value
        tic_stepfinalize = time.time()
        prevM = n.copy(self.M)
        self.M, self.fM = self.obj_wrapper.convert_parameter(x,comp_real=True)
 
        apply_sym = sym is not None and self.cparams.get('perfect_symmetry',True) and self.cparams.get('apply_symmetry',True)
        if apply_sym:
            self.M = sym.apply(self.M)

        # Truncate the density to bounds if they exist
        if self.cparams['density_lb'] is not None:
            n.maximum(self.M,self.cparams['density_lb']*self.cparams['modelscale'],out=self.M)
        if self.cparams['density_ub'] is not None:
            n.minimum(self.M,self.cparams['density_ub']*self.cparams['modelscale'],out=self.M)

        # Compute net change
        self.dM = prevM - self.M

        # Convert to fourier space (may not be required)
        if self.fM is None or apply_sym \
           or self.cparams['density_lb'] != None \
           or self.cparams['density_ub'] != None:
            self.fM = density.real_to_fspace(self.M)
        timing['step_finalize'] = time.time() - tic_stepfinalize

        # Compute step statistics
        tic_stepstats = time.time()
        step_size = n.linalg.norm(self.dM)
        grad_size = n.linalg.norm(dlogP)
        M_norm = n.linalg.norm(self.M)

        self.num_data_evals += extra_num_data
        inc_ratio = step_size / M_norm
        self.statout.output(step_size=[step_size],
                            inc_ratio=[inc_ratio],
                            grad_size=[grad_size],
                            norm_density=[M_norm])
        timing['step_stats'] = time.time() - tic_stepstats


        # Update import sampling distributions
        tic_isupdate = time.time()
        self.sampler_R.perform_update()
        self.sampler_I.perform_update()
        self.sampler_S.perform_update()

        self.diagout.output(global_phi_R=self.sampler_R.get_global_dist())
        self.diagout.output(global_phi_I=self.sampler_I.get_global_dist())
        self.diagout.output(global_phi_S=self.sampler_S.get_global_dist())
        timing['is_update'] = time.time() - tic_isupdate
        
        # Output basic diagnostics
        tic_diagnostics = time.time()
        self.diagout.output(iteration=self.iteration, epoch=epoch, cepoch=cepoch)

        if self.logpost_history.N_sum != self.cryodata.N_batches:
            self.logpost_history.setup(trainLogP,self.cryodata.N_batches)
        self.logpost_history.set_value(trainbatch['id'],trainLogP)

        if self.like_history.N_sum != self.cryodata.N_batches:
            self.like_history.setup(res_train['L'],self.cryodata.N_batches)
        self.like_history.set_value(trainbatch['id'],res_train['L'])

        self.outputbatchinfo(trainbatch, res_train, trainLogP, 'train', 'Train')

        # Dump parameters here to catch the defaults used in evaluation
        self.diagout.output(params=self.cparams,
                            envelope_mle=self.like_func.get_envelope_mle(),
                            sigma2_mle=self.like_func.get_sigma2_mle(),
                            hostname=socket.gethostname())
        self.statout.output(num_data=[num_data],
                            num_data_evals=[self.num_data_evals],
                            iteration=[self.iteration],
                            epoch=[epoch],
                            cepoch=[cepoch],
                            logp=[self.logpost_history.get_mean()],
                            like=[self.like_history.get_mean()],
                            sigma=[self.like_func.get_rmse()],
                            time=[time.time()])
        timing['diagnostics'] = time.time() - tic_diagnostics

        checkpoint_it = self.iteration % self.cparams.get('checkpoint_frequency',50) == 0 
        save_it = checkpoint_it or self.cparams['save_iteration'] or \
                  time.time() - self.last_save > self.cparams.get('save_time',n.inf)
                  
        if save_it:
            tic_save = time.time()
            self.last_save = tic_save
            if self.io_queue.qsize():
                print "Warning: IO queue has become backlogged with {0} remaining, waiting for it to clear".format(self.io_queue.qsize())
                self.io_queue.join()
            self.io_queue.put(( 'pkl', self.statout.fname, copy(self.statout.outdict) ))
            self.io_queue.put(( 'pkl', self.diagout.fname, deepcopy(self.diagout.outdict) ))
            self.io_queue.put(( 'pkl', self.likeout.fname, deepcopy(self.likeout.outdict) ))
            self.io_queue.put(( 'mrc', opj(self.outbase,'model.mrc'), \
                                (n.require(self.M,dtype=density.real_t),self.voxel_size) ))
            self.io_queue.put(( 'mrc', opj(self.outbase,'dmodel.mrc'), \
                                (n.require(self.dM,dtype=density.real_t),self.voxel_size) ))

            if checkpoint_it:
                self.io_queue.put(( 'cp', self.diagout.fname, self.diagout.fname+'-{0:06}'.format(self.iteration) ))
                self.io_queue.put(( 'cp', self.likeout.fname, self.likeout.fname+'-{0:06}'.format(self.iteration) ))
                self.io_queue.put(( 'cp', opj(self.outbase,'model.mrc'), opj(self.outbase,'model-{0:06}.mrc'.format(self.iteration)) ))
            timing['save'] = time.time() - tic_save
                
            
        time_total = time.time() - tic_mini
        self.ostream("  Minibatch Total - %.2f seconds                         Total Runtime - %s" %
                     (time_total, format_timedelta(datetime.now() - self.startdatetime) ))

        
        return self.iteration < self.cparams.get('max_iterations',n.inf) and \
               cepoch < self.cparams.get('max_epochs',n.inf)
예제 #5
0
from scipy.stats import rankdata

from util import Params, set_logger, prepare_sns

parser = argparse.ArgumentParser()
parser.add_argument('--experiment_dir',
                    default='experiments/base_model',
                    help="Directory containing params.json")

if __name__ == '__main__':
    # Load the parameters from the experiment params.json file in model_dir
    args = parser.parse_args()
    json_path = os.path.join(args.experiment_dir, 'params.json')
    assert os.path.isfile(
        json_path), "No json configuration file found at {}".format(json_path)
    params = Params(json_path)
    params.update(json_path)

    # Set the logger
    set_logger(os.path.join(args.experiment_dir, 'experiment.log'),
               level=logging.INFO,
               console=True)

    # Log Title
    logging.info("DPP-Diff Generator")
    logging.info("Sabri Eyuboglu  -- SNAP Group")
    logging.info("======================================")

    prepare_sns(sns, params)

    diseases_dict = load_diseases(params.diseases_path, params.disease_subset)
예제 #6
0
    Hh = np.zeros(n, dtype=np.cdouble)
    for i in range(n):
        for j in range(n):
            #            Jh[i]=Jh[i] + (ds/2.0/np.pi)*np.exp(1j*s[j]*sigma[i])*amp[j]
            Hh[i] = Hh[i] + (ds / 2.0 / np.pi) * np.exp(1j * s[j] * sigma[i]) * \
                amp[j] * (-np.abs(s[j]) / (3.0 * phix[i])) * rat[j]

    print('Hh reals: ', np.real(Hh))
    return np.abs(np.real(Hh))


if __name__ == '__main__':

    # Set up line and get data from bin files
    lya = Line(1215.6701, 0.4164, 6.265e8)
    p = Params(line=lya, temp=1e4, tau0=1e7, num_dens=1701290465.5139434, 
           energy=1., R=1e11, sigma_source=0., n_points=1e4)
    mu, x, time = read_bin('../data/1m_tau0_10000000.0_xinit_0.0_temp_10000.0_probabs_0.0/')

    norm = 4.0 * np.pi * p.R**2. * p.delta * 4.0 * np.pi / p.energy
    print('norm: ', norm)

    # Set up matplotlib figure
    fig, ax = plt.subplots(1, 1, figsize=(12, 9))

    # Histogram data from Monte Carlo x
    xbins, n, err = monte_carlo(x)
#    xbins2, n2, err2 = monte_carlo(x, bins=256)
    ax.errorbar(xbins, n, yerr=err, fmt='.', c='m', ms=3, label='Monte Carlo')
#    ax.errorbar(xbins2, n2, yerr=err2, fmt='.', c='c', ms=3, label='Monte Carlo 2', alpha=0.25)

    # H_0 from analytic solution
예제 #7
0
파일: config.py 프로젝트: hexiangquan/CNN
import secret

'''
This file contains the configurable hyperparameters of the CNN. For instance the backprogagation method,
the number of convolutional layers and their architecutre, curriculum learning behavior etc.
'''
#Create secret python file and variable token
token = secret.token
verbose = True
number_of_epochs = 100
dataset_path =  '/home/olav/Pictures/Mass_roads_alpha'
pr_path =       '/home/olav/Pictures/Mass_roads_alpha'
filename_params = Params({
        "results"               : "./results",
        "network_save_name"     : "./results/params.pkl",
        "curriculum_teacher"    : "/home/olav/Documents/Results/E7_inexperienced_teacher/teacher/params.pkl",
        "curriculum_location"   : "/media/olav/Data storage/dataset/Mass_inexperienced_100-2-5-stages"

    })

visual_params = Params({
        "endpoint"              : "http://178.62.232.71/",
        "gui_enabled"           : True
    })

optimization_params = Params({
        "backpropagation"                   : "sgd_nesterov",
        "batch_size"                        : 64,
        "l2_reg"                            : 0.0001,
        "momentum"                          : 0.93,
        "initial_patience"                  : 500000,
예제 #8
0
        (obj.p.delta * obj.kappa_n / obj.p.k)**2. * y1 -
        3. * obj.omega * obj.p.delta**2. * obj.p.phi(float(sigma)) / obj.p.k /
        c * x1,  # dy2_dsigma
        x2,  # dx1_dsigma = x2
        y2  # dy1_dsigma = y2
    ])


if __name__ == '__main__':

    # Create params object
    lya = Line(1215.6701, 0.4164, 6.265e8)
    p = Params(line=lya,
               temp=1e4,
               tau0=1e7,
               num_dens=1e6,
               energy=1.,
               sigma_source=0.,
               n_points=1e5,
               R=1e11)

    # Comparison of characteristic time and characteristic frequency
    tc = p.R / c * p.tau0  # Characteristic timescale
    omega_c = c / p.R * (p.a * p.tau0)**(-1. / 3.)

    print('1/tc=', 1. / tc)
    print('omega_c=', omega_c)
    print('R/c = ', p.R / c)

    # Plot some fourier coefficients
    #    fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 6))