def stitchAllBlobs(slidelist, quiet=True, debug=False): t_start_stitching = time.time() printl('') for slide_num, slide in enumerate(slidelist[:-1]): # Skipping last slide, because pairing go from lower slide to upper slide, so it's already processed with the second to last slide # IE blob2ds in the last slide are partners to the previous slide's blob2ds, and have no direct possible partners of their own t_start_stitching_this_slide = time.time() printl('Stitching %s blob2ds from slide #%s/%s to %s blob2ds from slide #%s/%s' % (len(slide.blob2dlist), slide_num + 1, len(slidelist), len(slidelist[slide_num+1].blob2dlist), str(slide_num + 2), len(slidelist)), end=' ') progress = ProgressBar(max_val=len(slide.blob2dlist), increments=20, symbol='.') # Note actually more responsive to do based on blob than # of pixels, due to using only a subset to stitch for b_num, blob1 in enumerate(slide.blob2dlist): blob1 = Blob2d.get(blob1) if len(blob1.possible_partners) > 0: if debug: printl(' Starting on a new blob from bloblist:' + str(blob1) + ' which has:' + str( len(blob1.possible_partners)) + ' possible partners') for b2_num, blob2 in enumerate(blob1.possible_partners): blob2 = Blob2d.get(blob2) if debug: printl(' Comparing to blob2:' + str(blob2)) new_stitch = Pairing(blob1.id, blob2.id, 1.1, 36, quiet=quiet) # TODO use this to assign ids to pairings progress.update(b_num, set_val=True) if quiet and not debug: progress.finish() print_elapsed_time(t_start_stitching_this_slide, time.time(), prefix='took') print_elapsed_time(t_start_stitching, time.time(), prefix='Stitching all slides took', endline=False) printl(' total')
def loadFromFile(self, file_path): if self.log is not None: self.log.log("Loading DFT data") self.log.indent() self.log.log("File = %s" % (file_path)) with open(file_path, 'r') as file: text = file.read() text = text.rstrip() lines = text.split("\n") progress = ProgressBar("Poscar Files ", 22, len(lines), update_every=50) progress.estimate = False # This code originally had validation checks for all values. # For now, they have been removed. Experience using the program # for quite a while has led me to believe that they are uneccessary. start_line = 0 while start_line < len(lines): # We need to know the number of atoms in the file # before we can send the proper string of text to # the parsing function. atoms_in_struct = int(lines[start_line + 5]) base = start_line stride = base + 8 + atoms_in_struct structure_lines = lines[base:stride] struct = PoscarStructure(structure_lines, self.e_shift) self.n_atoms += struct.n_atoms self.structures.append(struct) if struct.comment not in self.all_comments: self.all_comments.append(struct.comment) start_line += 8 + atoms_in_struct progress.update(start_line) self.n_structures = len(self.structures) progress.finish() self.loaded = True if self.log is not None: self.log.log("Atoms Loaded = %i" % self.n_atoms) self.log.log("Structures Loaded = %i" % self.n_structures) self.log.unindent() return self
def GenerateLocalStructureParams(neighbor_list, potential_config, log=None): if log is not None: log.log("Generating Local Structure Parameters") log.indent() # Here we compute the number of operations that will need # to take place in order to calculate the structural # parameters. This is somewhat of an estimate, but the # operation should scale roughly by a factor of n^2. # In practice, this has generally been an excellent estimate. n_total = 0 for struct in neighbor_list: for atom in struct: n_total += (len(atom)**2 - len(atom)) / 2 n_processed = 0 progress = ProgressBar("Structural Parameters ", 22, n_total, update_every=8) structural_parameters = [] parameters_per_atom = potential_config.n_legendre_polynomials parameters_per_atom *= potential_config.n_r0 # Here we iterate over every structure. And then # over every atom. We export the structural parameter # calculation for each individual atom to another function. for struct in neighbor_list: processed = 0 # Iterate over all structures. parameters_for_structure = np.zeros((len(struct), parameters_per_atom)) for idx, atom_neighbors in enumerate(struct): processed += (len(atom_neighbors)**2 - len(atom_neighbors)) / 2 # Iterate over each atom in the structure and compute the # parameters for it. parameters_for_structure[idx, :] = computeParameters( atom_neighbors, potential_config) n_processed += processed progress.update(n_processed) structural_parameters.append(parameters_for_structure) progress.finish() if log is not None: log.log("Time Elapsed = %ss" % progress.ttc) log.unindent() return structural_parameters
def set_all_shape_contexts(slidelist): # Note Use the shape contexts approach from here: http://www.cs.berkeley.edu/~malik/papers/mori-belongie-malik-pami05.pdf # Note The paper uses 'Representative Shape Contexts' to do inital matching; I will do away with this in favor of checking bounds for possible overlaps t0 = time.time() pb = ProgressBar(max_val=sum( len(Blob2d.get(b2d).edge_pixels) for slide in slidelist for b2d in slide.blob2dlist)) for slide in slidelist: for blob in slide.blob2dlist: Blob2d.get(blob).set_shape_contexts(36) pb.update(len(Blob2d.get(blob).edge_pixels), set_val=False) pb.finish() print_elapsed_time(t0, time.time(), prefix='took')
def loadFromText(self, text): lines = text.rstrip().split('\n') self.config = PotentialConfig().loadFromText('\n'.join(lines[:8])) self.potential_type = int(self._getCellsFromLine(lines[8])[0]) self.n_structures = int(self._getCellsFromLine(lines[9])[0]) self.n_atoms = int(self._getCellsFromLine(lines[10])[0]) parameters_per_atom = self.config.n_legendre_polynomials parameters_per_atom *= self.config.n_r0 progress = ProgressBar("Loading Training Set", 22, self.n_structures, update_every=10) # Every set of two lines from 13 onwards should correspond to a single # atom. Line 12 doesn't contain useful information. # This code will convert the file into a list of structures. Each # element in this list is a list of training inputs, each one # corresponding to an atom in the structure. self.structures = [] idx = 12 current_struct = [] current_id = 0 while idx < len(lines): atom = TrainingInput().fromLines(lines[idx], lines[idx + 1], parameters_per_atom) if atom.structure_id != current_id: self.structures.append(current_struct) current_struct = [] current_id = atom.structure_id progress.update(current_id + 1) current_struct.append(atom) idx += 2 progress.finish() self.structures.append(current_struct) if self.log is not None: self.log.log("Atoms Loaded = %i" % self.n_atoms) self.log.log("Structures Loaded = %i" % self.n_structures) self.log.log("Time Elapsed = %ss" % progress.ttc) self.log.unindent() return self
def compute_dff(data, percentile=8., window_size=1., step_size=.025, subtract_minimum=True, pad_mode='edge'): """Compute delta-f-over-f Computes the percentile-based delta-f-over-f along the 0th axis of the supplied data. Parameters ---------- data : np.ndarray n-dimensional data (DFF is taken over axis 0) percentile : float percentile of data window to be taken as F0 window_size : float size of window to determine F0, in seconds step_size : float size of steps used to determine F0, in seconds subtract_minimum : bool substract minimum value from data before computing pad_mode : str mode argument for np.pad, used to specify F0 determination at start of data Returns ------- Data of the same shape as input, transformed to DFF """ data = data.copy() window_size = int(window_size*data.fs) step_size = int(step_size*data.fs) if step_size<1: warnings.warn('Requested a step size smaller than sampling interval. Using sampling interval.') step_size = 1. if subtract_minimum: data -= data.min() pad_size = window_size - 1 pad = ((pad_size,0),) + tuple([(0,0) for _ in xrange(data.ndim-1)]) padded = np.pad(data, pad, mode=pad_mode) out_size = ((len(padded) - window_size) // step_size) + 1 pbar = ProgressBar(maxval=out_size).start() f0 = [] for idx,win in enumerate(sw(padded, ws=window_size, ss=step_size)): f0.append(np.percentile(win, percentile, axis=0)) pbar.update(idx) f0 = np.repeat(f0, step_size, axis=0)[:len(data)] pbar.finish() return (data-f0)/f0
def writeToFile(self, file_path): if self.log is not None: self.log.log("Writing Training Set to File") self.log.indent() self.log.log("File = %s" % (file_path)) # 50 Kb buffer because these files are always large. This should # make the write a little faster. with open(file_path, 'w', 1024 * 50) as file: file.write(self.config.toFileString(prepend_comment=True)) file.write(' # %i - Potential Type\n' % (1)) file.write(' # %i - Number of Structures\n' % (self.n_structures)) file.write(' # %i - Number of Atoms\n' % (self.n_atoms)) file.write(' # ATOM-ID GROUP-NAME GROUP_ID STRUCTURE_ID ') file.write('STRUCTURE_Natom STRUCTURE_E_DFT STRUCTURE_Vol\n') progress = ProgressBar("Writing LSParams ", 22, self.n_atoms, update_every=50) progress.estimate = False atom_idx = 0 for struct in self.structures: for training_input in struct: file.write( 'ATOM-%i %s %i %i %i %.6E %.6E\n' % (atom_idx, training_input.group_name, training_input.group_id, training_input.structure_id, training_input.structure_n_atoms, training_input.structure_energy, training_input.structure_volume)) current_params = training_input.structure_params params_strs = ['%.6E' % g for g in current_params] params_strs = ' '.join(params_strs) file.write('Gi %s\n' % (params_strs)) atom_idx += 1 progress.update(atom_idx) progress.finish() file.write('\n') if self.log is not None: self.log.log("Time Elapsed = %ss" % progress.ttc) self.log.unindent()
def test(self, data, label='Test'): N = int(math.ceil(len(data) / self.batch_size)) cost = 0 x = np.ndarray([self.batch_size, self.edim], dtype=np.float32) time = np.ndarray([self.batch_size, self.mem_size], dtype=np.int32) target = np.zeros([self.batch_size, self.nwords]) context = np.ndarray([self.batch_size, self.mem_size]) x.fill(self.init_hid) for t in xrange(self.mem_size): time[:, t].fill(t) if self.show: from util import ProgressBar bar = ProgressBar(label, max=N) m = self.mem_size for idx in xrange(N): if self.show: bar.next() target.fill(0) for b in xrange(self.batch_size): target[b][data[m]] = 1 context[b] = data[m - self.mem_size:m] m += 1 if m >= len(data): m = self.mem_size loss = self.sess.run([self.loss], feed_dict={self.input: x, self.time: time, self.target: target, self.context: context}) cost += np.sum(loss) if self.show: bar.finish() return cost / N / self.batch_size
def train(self, data): N = int(math.ceil(len(data) / self.batch_size)) cost = 0 x = np.ndarray([self.batch_size, self.edim], dtype=np.float32) time = np.ndarray([self.batch_size, self.mem_size], dtype=np.int32) target = np.zeros([self.batch_size, self.nwords]) context = np.ndarray([self.batch_size, self.mem_size]) x.fill(self.init_hid) for t in xrange(self.mem_size): time[:, t].fill(t) if self.show: from util import ProgressBar bar = ProgressBar('Train', max=N) for idx in xrange(N): if self.show: bar.next() target.fill(0) for b in xrange(self.batch_size): m = random.randrange(self.mem_size, len(data)) target[b][data[m]] = 1 context[b] = data[m - self.mem_size:m] _, loss, self.step = self.sess.run([self.optim, self.loss, self.global_step], feed_dict={ self.input: x, self.time: time, self.target: target, self.context: context}) cost += np.sum(loss) if self.show: bar.finish() return cost / N / self.batch_size
def generateLSP(self, neighbors, max_chunk=500): chunk_start = 0 chunk_stride = chunk_start + max_chunk lsp = None progress = ProgressBar( "Structural Parameters ", 22, int(len(neighbors) / max_chunk), update_every = 5 ) idx = 0 while chunk_start < len(neighbors): self.loadNeighbors(neighbors[chunk_start:chunk_stride]) tmp = self._computeLSP() self.cleanupNeighbors() if lsp is None: lsp = tmp else: lsp = torch.cat((lsp, tmp), 0) chunk_start += max_chunk chunk_stride += max_chunk chunk_stride = min(chunk_stride, len(neighbors)) idx += 1 progress.update(idx) progress.finish() return lsp
def _train_loop(self): progress = ProgressBar("Training ", 22, self.iterations + int(self.iterations == 0), update_every=1) while self.iteration <= self.iterations: progress.update(self.iteration) self.training_losses[self.iteration] = self.last_loss if self.restart_error != 0.0: if self.last_loss > self.restart_error: if self.restarts == 3: if self.log is not None: msg = "Maximum number of restarts exceeded." self.log.log(msg) break else: if self.log is not None: msg = "Error threshold exceeded, restarting." self.log.log(msg) self.need_to_restart = True self.restarts += 1 break # The following lines figure out if we have reached an iteration # where validation information or volume vs. energy information # needs to be stored. if self.val_interval != 0: if self.iteration % self.val_interval == 0: idx = (self.iteration // self.val_interval) self.validation_losses[idx] = self.validation_loss() if self.energy_interval != 0: if self.iteration % self.energy_interval == 0: idx = (self.iteration // self.energy_interval) self.energies[idx, :] = self.get_structure_energies() if self.backup_interval != 0: if self.iteration % self.backup_interval == 0: idx = self.iteration path = self.backup_dir + 'nn_bk_%05i.nn.dat' % idx layers = self.nn.getNetworkValues() self.potential.layers = layers self.potential.writeNetwork(path) if self.smi_log != '': if self.iteration % 50 == 0: try: smi_stdout = subprocess.getoutput("nvidia-smi") self.smi_outputs.append(smi_stdout) except: self.smi_outputs.append("nvidia-smi call failed") # Perform an evaluate and correct step, while storing # the resulting loss in self.training_losses. self.optimizer.step(self.training_closure) self.iteration += 1 progress.finish()
elif args.sweep_dir != '': delta = args.z_max - args.z_min args.z_min = z_center - (delta / 2) args.z_max = args.z_min + delta if args.sweep_dir != '': if not os.path.isdir(args.sweep_dir): os.mkdir(args.sweep_dir) if args.sweep_dir[-1] != '/': args.sweep_dir += '/' progress = ProgressBar("Rendering ", 22, args.sweep_n, update_every=1) sweep = np.linspace(args.z_min, args.z_max, args.sweep_n) for idx, z in enumerate(sweep): fname = args.sweep_dir + '%05i.png' % idx render_heatmap(structure, potential, nn, res, width, z, args, save=fname) progress.update(idx + 1) progress.finish() else: render_heatmap(structure, potential, nn, res, width, args.z, args)
def compute_motion_correction(mov, max_shift=5, sub_pixel=True, template_func=np.median, n_iters=5): """Computes motion correction shifts by template matching Parameters ---------- (described in correct_motion doc) This can be used on its own to attain only the shifts without correcting the movie """ def _run_iter(mov, base_shape, ms, sub_pixel): mov = mov.astype(np.float32) h_i,w_i = base_shape template=template_func(mov,axis=0) template=template[ms:h_i-ms,ms:w_i-ms].astype(np.float32) h,w = template.shape shifts=[] # store the amount of shift in each frame for i,frame in enumerate(mov): pbar.update(it_i*len(mov) + i) res = cv2.matchTemplate(frame,template,cv2.TM_CCORR_NORMED) avg_corr=np.mean(res); top_left = cv2.minMaxLoc(res)[3] sh_y,sh_x = top_left bottom_right = (top_left[0] + w, top_left[1] + h) if sub_pixel: if (0 < top_left[1] < 2 * ms-1) & (0 < top_left[0] < 2 * ms-1): # if max is internal, check for subpixel shift using gaussian # peak registration log_xm1_y = np.log(res[sh_x-1,sh_y]) log_xp1_y = np.log(res[sh_x+1,sh_y]) log_x_ym1 = np.log(res[sh_x,sh_y-1]) log_x_yp1 = np.log(res[sh_x,sh_y+1]) four_log_xy = 4*np.log(res[sh_x,sh_y]) sh_x_n = -(sh_x - ms + (log_xm1_y - log_xp1_y) / (2 * log_xm1_y - four_log_xy + 2 * log_xp1_y)) sh_y_n = -(sh_y - ms + (log_x_ym1 - log_x_yp1) / (2 * log_x_ym1 - four_log_xy + 2 * log_x_yp1)) else: sh_x_n = -(sh_x - ms) sh_y_n = -(sh_y - ms) M = np.float32([[1,0,sh_y_n],[0,1,sh_x_n]]) mov[i] = cv2.warpAffine(frame,M,(w_i,h_i),flags=cv2.INTER_CUBIC) else: sh_x = -(top_left[1] - ms) sh_y = -(top_left[0] - ms) M = np.float32([[1,0,sh_y],[0,1,sh_x]]) mov[i] = cv2.warpAffine(frame,M,(w_i,h_i)) shifts.append([sh_x_n,sh_y_n,avg_corr]) return (template,np.array(shifts),mov) mov_orig = mov.copy() h_i,w_i = mov.shape[1:] templates = [] values = [] n_steps = n_iters*len(mov_orig) #for progress bar pbar = ProgressBar(maxval=n_steps).start() for it_i in xrange(n_iters): pbar.update(it_i*len(mov_orig)) ti,vi,mov = _run_iter(mov, (h_i,w_i), max_shift, sub_pixel) templates.append(ti) values.append(vi) pbar.finish() return np.array(templates), np.array(values)
def compute_motion_AG(mov, max_shift_hw=(5,5), show_movie=False,template=np.median,interpolation=cv2.INTER_LINEAR,in_place=False): """ Performs motion corretion using the opencv matchtemplate function. At every iteration a template is built by taking the median of all frames and then used to align the other frames. Parameters ---------- max_shift: maximum pixel shifts allowed when correcting show_movie : display the movie wile correcting it in_place: if True the input vector is overwritten Returns ------- movCorr: motion corected movie shifts : tuple, contains shifts in x and y and correlation with template template: the templates created at each iteration """ if not in_place: mov=mov.copy() mov=mov.astype(np.float32) n_frames_,h_i, w_i = mov.shape ms_h,ms_w=max_shift_hw if callable(template): template=template(mov,axis=0) elif not type(template) == np.ndarray: raise Exception('Only matrices or function accepted') template=template[ms_h:h_i-ms_h,ms_w:w_i-ms_w].astype(np.float32) h,w = template.shape # template width and height #if show_movie: # cv2.imshow('template',template/255) # cv2.waitKey(2000) # cv2.destroyAllWindows() #% run algorithm, press q to stop it shifts=[]; # store the amount of shift in each frame pbar = ProgressBar(maxval=n_frames_).start() for i,frame in enumerate(mov): pbar.update(i) res = cv2.matchTemplate(frame,template,cv2.TM_CCORR_NORMED) avg_corr=np.mean(res); top_left = cv2.minMaxLoc(res)[3] sh_y,sh_x = top_left bottom_right = (top_left[0] + w, top_left[1] + h) if (0 < top_left[1] < 2 * ms_h-1) & (0 < top_left[0] < 2 * ms_w-1): # if max is internal, check for subpixel shift using gaussian # peak registration log_xm1_y = np.log(res[sh_x-1,sh_y]); log_xp1_y = np.log(res[sh_x+1,sh_y]); log_x_ym1 = np.log(res[sh_x,sh_y-1]); log_x_yp1 = np.log(res[sh_x,sh_y+1]); four_log_xy = 4*np.log(res[sh_x,sh_y]); sh_x_n = -(sh_x - ms_h + (log_xm1_y - log_xp1_y) / (2 * log_xm1_y - four_log_xy + 2 * log_xp1_y)) sh_y_n = -(sh_y - ms_w + (log_x_ym1 - log_x_yp1) / (2 * log_x_ym1 - four_log_xy + 2 * log_x_yp1)) else: sh_x_n = -(sh_x - ms_h) sh_y_n = -(sh_y - ms_w) M = np.float32([[1,0,sh_y_n],[0,1,sh_x_n]]) mov[i] = cv2.warpAffine(frame,M,(w_i,h_i),flags=interpolation) shifts.append([sh_x_n,sh_y_n,avg_corr]) if show_movie: fr = cv2.resize(mov[i],None,fx=2, fy=2, interpolation = cv2.INTER_CUBIC) cv2.imshow('frame',fr/255.0) if cv2.waitKey(1) & 0xFF == ord('q'): cv2.destroyAllWindows() break pbar.finish() cv2.destroyAllWindows() return (mov,template,shifts)
def bloom_b3ds(blob3dlist, stitch=False): allb2ds = [Blob2d.get(b2d) for b3d in blob3dlist for b2d in b3d.blob2ds] printl('\nProcessing internals of ' + str(len(allb2ds)) + ' 2d blobs via \'blooming\' ', end='') t_start_bloom = time.time() num_unbloomed = len(allb2ds) pb = ProgressBar(max_val=sum(len(b2d.pixels) for b2d in allb2ds), increments=50) for bnum, blob2d in enumerate(allb2ds): blob2d.gen_internal_blob2ds( ) # NOTE will have len 0 if no blooming can be done pb.update(len(blob2d.pixels), set_val=False ) # set is false so that we add to an internal counter pb.finish() print_elapsed_time(t_start_bloom, time.time(), prefix='took') printl('Before blooming there were: ' + str(num_unbloomed) + ' b2ds contained within b3ds, there are now ' + str(len(Blob2d.all))) # Setting possible_partners printl( 'Pairing all new blob2ds with their potential partners in adjacent slides' ) max_avail_depth = max(b2d.recursive_depth for b2d in Blob2d.all.values()) for cur_depth in range(max_avail_depth)[1:]: # Skip those at depth 0 depth = [ b2d.id for b2d in Blob2d.all.values() if b2d.recursive_depth == cur_depth ] max_h_d = max(Blob2d.all[b2d].height for b2d in depth) min_h_d = min(Blob2d.all[b2d].height for b2d in depth) ids_by_height = [[] for _ in range(max_h_d - min_h_d + 1)] for b2d in depth: ids_by_height[Blob2d.get(b2d).height - min_h_d].append(b2d) for height_val, h in enumerate( ids_by_height[:-1]): # All but the last one for b2d in h: b2d = Blob2d.all[b2d] b2d.set_possible_partners(ids_by_height[height_val + 1]) # Creating b3ds printl('Creating 3d blobs from the generated 2d blobs') all_new_b3ds = [] for depth_offset in range( max_avail_depth + 1 )[1:]: # Skip offset of zero, which refers to the b3ds which have already been stitched printd('Depth_offset: ' + str(depth_offset), Config.debug_blooming) new_b3ds = [] for b3d in blob3dlist: all_d1_with_pp_in_this_b3d = [] for b2d in b3d.blob2ds: # Note this is the alternative to storing b3dID with b2ds b2d = Blob2d.get(b2d) d_1 = [ blob for blob in b2d.getdescendants() if blob.recursive_depth == b2d.recursive_depth + depth_offset ] if len(d_1): for desc in d_1: if len(desc.possible_partners): all_d1_with_pp_in_this_b3d.append(desc.id) all_d1_with_pp_in_this_b3d = set(all_d1_with_pp_in_this_b3d) if len(all_d1_with_pp_in_this_b3d) != 0: printd(' Working on b3d: ' + str(b3d), Config.debug_blooming) printd( ' Len of all_d1_with_pp: ' + str(len(all_d1_with_pp_in_this_b3d)), Config.debug_blooming) printd(' They are: ' + str(all_d1_with_pp_in_this_b3d), Config.debug_blooming) printd( ' = ' + str( list( Blob2d.get(b2d) for b2d in all_d1_with_pp_in_this_b3d)), Config.debug_blooming) for b2d in all_d1_with_pp_in_this_b3d: b2d = Blob2d.get(b2d) printd( ' Working on b2d: ' + str(b2d) + ' with pp: ' + str(b2d.possible_partners), Config.debug_blooming) if b2d.b3did == -1: # unset cur_matches = [ b2d ] # NOTE THIS WAS CHANGED BY REMOVED .getdescendants() #HACK for pp in b2d.possible_partners: printd( " *Checking if pp:" + str(pp) + ' is in all_d1: ' + str(all_d1_with_pp_in_this_b3d), Config.debug_blooming) if pp in all_d1_with_pp_in_this_b3d: # HACK REMOVED printd(" Added partner: " + str(pp), Config.debug_blooming) cur_matches += [ Blob2d.get(b) for b in Blob2d.get(pp).getpartnerschain() ] if len(cur_matches) > 1: printd("**LEN OF CUR_MATCHES MORE THAN 1", Config.debug_blooming) new_b3d_list = [ blob.id for blob in set(cur_matches) if blob.recursive_depth == b2d.recursive_depth and blob.b3did == -1 ] if len(new_b3d_list): new_b3ds.append( Blob3d(new_b3d_list, r_depth=b2d.recursive_depth)) all_new_b3ds += new_b3ds printl(' Made a total of ' + str(len(all_new_b3ds)) + ' new b3ds') if stitch: # Set up shape contexts printl('Setting shape contexts for stitching') for b2d in [ Blob2d.all[b2d] for b3d in all_new_b3ds for b2d in b3d.blob2ds ]: b2d.set_shape_contexts(36) # Stitching printl('Stitching the newly generated 2d blobs') for b3d_num, b3d in enumerate(all_new_b3ds): printl(' Working on b3d: ' + str(b3d_num) + ' / ' + str(len(all_new_b3ds))) Pairing.stitch_blob2ds(b3d.blob2ds, debug=False) return all_new_b3ds
def GenerateNeighborList(self, structures): if self.log is not None: self.log.log("Generating Neighbor List") self.log.indent() # For each atom within each structure, we need to generate a list # of atoms within the cutoff distance. Periodic images need to be # accounted for during this process. Neighbors in this list are # specified as coordinates, rather than indices. # The final return value of this function in a 3 dimensional list, # with the following access structure: # neighbor = list[structure][atom][neighbor_index] # First we will compute the total number of atoms that need to be # processed in order to get an estimate of the time this will take # to complete. n_total = sum([struct.n_atoms**2 for struct in structures]) progress = ProgressBar("Neighbor List ", 22, n_total, update_every=25) progress.estimate = False # IMPORTANT NOTE: This needs to be multiplied by 1.5 when PINN # gets implemented. cutoff = self.config.cutoff_distance * 1.0 n_processed = 0 structure_start = 0 structure_stride = 0 for structure in structures: # Normalize the translation vectors. a1_n = np.linalg.norm(structure.a1) a2_n = np.linalg.norm(structure.a2) a3_n = np.linalg.norm(structure.a3) # Numpy will automatically convert these to arrays when they are # passed to numpy functions, but it will do that each time we call # a function. Converting them beforehand will save some time. a1 = structure.a1 a2 = structure.a2 a3 = structure.a3 # Determine the number of times to repeat the # crystal structure in each direction. x_repeat = int(np.ceil(cutoff / a1_n)) y_repeat = int(np.ceil(cutoff / a2_n)) z_repeat = int(np.ceil(cutoff / a3_n)) # Now we construct an array of atoms that contains all # of the repeated atoms that are necessary. We need to # repeat the crystal structure from -repeat*A_n to # positive repeat*A_n. # This is the full periodic structure that we generate. # It is a list of vectors, each vector being a length 3 # list of floating points. n_periodic_atoms = (2 * x_repeat + 1) n_periodic_atoms *= (2 * y_repeat + 1) n_periodic_atoms *= (2 * z_repeat + 1) n_periodic_atoms *= structure.n_atoms periodic_structure = np.zeros((n_periodic_atoms, 3)) atom_idx = 0 for i in range(-x_repeat, x_repeat + 1): for j in range(-y_repeat, y_repeat + 1): for k in range(-z_repeat, z_repeat + 1): # This is the new location to use as the center # of the crystal lattice. center_location = a1 * i + a2 * j + a3 * k # Now we add each atom + new center location # into the periodic structure. for atom in structure.atoms: val = atom + center_location periodic_structure[atom_idx] = val atom_idx += 1 # Here we actually iterate over every atom and then for each atom # determine which atoms are within the cutoff distance. for atom in structure.atoms: # This statement will subtract the current atom position from # the position of each potential neighbor, element wise. It # will then calculate the magnitude of each of these vectors # element wise. distances = np.linalg.norm(periodic_structure - atom, axis=1) # This is special numpy syntax for selecting all items in an # array that meet a condition. The boolean operators in the # square brackets actually convert the 'distances' array into # two arrays of boolean values and then computes their # boolean 'and' operation element wise. It then selects all # items in the array 'periodic_structure' that correspond to # a value of true in the array of boolean values. mask = (distances > 1e-8) & (distances < cutoff) neighbors = periodic_structure[mask] # This line just takes all of the neighbor vectors that we now # have (as absolute vectors) and changes them into vectors # relative to the atom that we are currently finding neighbors # for. neighbor_vecs = neighbors - atom self.atom_neighbors.append(neighbor_vecs) structure_stride += 1 self.structure_strides.append((structure_start, structure_stride)) structure_start = structure_stride # Update the performance information so we can report # progress to the user. n_processed += structure.n_atoms**2 progress.update(n_processed) progress.update(n_total) progress.finish() if self.log is not None: self.log.log("Time Elapsed = %ss" % progress.ttc) self.log.unindent()