def config(): use_1 = False use_both = False num_files = util_funcs.TOTAL_NUM_FILES clf_step = None use_expanded_y = True clf_name = "simple_nn.pt" num_epochs = 1000 ex.observers.append( MongoObserver.create(client=util_funcs.get_mongo_client())) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') test_size = 0.2 valid_size = 0.25 batch_size = 50 batch_print_size = 10 lr = 0.001 momentum = 0.9 step_size = 50 gamma = 0.8 dropout = 0.5 hidden_size_factor = 10
from os import path import sys from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.metrics import f1_score, make_scorer, accuracy_score, roc_auc_score, matthews_corrcoef, classification_report, mean_squared_error from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC import pickle as pkl import sacred from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler import xgboost as xgb ex = sacred.Experiment(name="seizure_predict_baseline_traditional_ml") import util_funcs ex.observers.append(MongoObserver.create(client=util_funcs.get_mongo_client())) @ex.named_config def rf(): parameters = { 'rf__criterion': ["gini", "entropy"], 'rf__n_estimators': [400, 600, 1200], # 'rf__n_estimators': [50, ], 'rf__max_features': ['auto', 'log2', 30], 'rf__max_depth': [None, 2, 8], #smaller max depth, gradient boosting, more max features 'rf__min_samples_split': [2, 4, 8], 'rf__n_jobs': [1], 'rf__min_weight_fraction_leaf': [0, 0.2, 0.5], # 'imb__method': [None, util_funcs.ImbalancedClassResampler.SMOTE, util_funcs.ImbalancedClassResampler.RANDOM_UNDERSAMPLE]