예제 #1
0
 def __init__(self):
     self.training_in, self.training_exp, self.test_in, self.test_exp = \
         get_data(params['DATASET'])
     self.n_vars = np.shape(self.test_in)[1]
     if params['ERROR_METRIC'] == None:
         self.error = mse
         params['ERROR_METRIC'] = self.error
     else:
         self.error = params['ERROR_METRIC']
     self.training_test = True
예제 #2
0
    def __init__(self):
        # Get training and test data
        self.training_in, self.training_exp, self.test_in, self.test_exp = \
            get_data(params['DATASET_TRAIN'], params['DATASET_TEST'])

        # Find number of variables.
        self.n_vars = np.shape(self.training_in)[0]

        # Regression/classification-style problems use training and test data.
        if params['DATASET_TEST']:
            self.training_test = True
예제 #3
0
    def __init__(self):
        # Initialise base fitness function class.
        super().__init__()

        # Get training and test data
        self.training_in, self.training_exp, self.test_in, self.test_exp = \
            get_data(params['DATASET_TRAIN'], params['DATASET_TEST'])

        # Find number of variables.
        self.n_vars = np.shape(self.training_in)[0]

        # Regression/classification-style problems use training and test data.
        if params['DATASET_TEST']:
            self.training_test = True
예제 #4
0
파일: tes.py 프로젝트: Heisenberg0203/GETS
    def __init__(self):
        # Initialise base fitness function class.
        super().__init__()

        # Get training and test data
        self.training_in, self.training_exp, self.test_in, self.test_exp = \
            get_data(params['DATASET_TRAIN'], params['DATASET_TEST'])

        # Find number of variables.
        self.n_vars = np.shape(self.training_in)[0]

        # Regression/classification-style problems use training and test data.
        if params['DATASET_TEST']:
            self.training_test = True
        a = np.array([])
예제 #5
0
    model = "ElasticNet int %.2f coefs %s" % (enet.intercept_,
                                              pprint(enet.coef_))
    yhat_train = enet.predict(train_X)
    yhat_test = enet.predict(test_X)

    return model, yhat_train, yhat_test


if __name__ == "__main__":

    dataset_name = sys.argv[1]
    if len(sys.argv) > 2:
        metric = sys.argv[2]
    else:
        metric = "rmse"

    s = "from .error_metric import " + metric + " as metric"
    exec(s)

    train_X, train_y, test_X, test_y = get_data(dataset_name)
    train_X = train_X.T
    test_X = test_X.T

    methods = [fit_maj_class, fit_const, fit_lr, fit_enet]
    for fit in methods:
        model, train_yhat, test_yhat = fit(train_X, train_y, test_X)
        error_train = metric(train_y, train_yhat)
        error_test = metric(test_y, test_yhat)
        print("%s %s %s train error %.2f test error %.2f" %
              (metric.__name__, fit.__name__, model, error_train, error_test))
예제 #6
0
파일: baselines.py 프로젝트: jmmcd/PonyGE2
    enet.fit(train_X, train_y)
    model = "ElasticNet int %.2f coefs %s" % (enet.intercept_, pprint(enet.coef_))
    yhat_train = enet.predict(train_X)
    yhat_test = enet.predict(test_X)
    
    return model, yhat_train, yhat_test

    
if __name__ == "__main__":

    dataset_name = sys.argv[1]
    if len(sys.argv) > 2:
        metric = sys.argv[2]
    else:
        metric = "rmse"

    s = "from .error_metric import " + metric + " as metric"
    exec(s)

    train_X, train_y, test_X, test_y = get_data(dataset_name)
    train_X = train_X.T
    test_X = test_X.T

    methods = [fit_maj_class, fit_const, fit_lr, fit_enet]
    for fit in methods:
        model, train_yhat, test_yhat = fit(train_X, train_y, test_X)
        error_train = metric(train_y, train_yhat)
        error_test = metric(test_y, test_yhat)
        print("%s %s %s train error %.2f test error %.2f" %
              (metric.__name__, fit.__name__, model, error_train, error_test))