예제 #1
0
    def set_order( self, order, index_norm_order = 1.0 ):
        self.order = order

        index_generator = IndexGenerator()
        #index_generator.set_parameters( self.num_dims, order, 
        #                                index_norm_order = index_norm_order )
        #index_generator.build_isotropic_index_set()
        #self.basis_indices = index_generator.get_all_indices()
        self.basis_indices = \
            index_generator.get_isotropic_indices( self.num_dims, 
                                                   order, 
                                                   index_norm_order )
        
        self.num_terms = len( self.basis_indices )
        self.coeff = numpy.zeros( (self.num_terms), numpy.double )
예제 #2
0
def pce_study( build_pts, build_vals, domain, 
               test_pts, test_vals, 
               results_file = None,
               cv_file = None, solver_type = 2 ):

    num_dims = build_pts.shape[0]

    index_generator = IndexGenerator()

    poly_1d = [ LegendrePolynomial1D() ]
    basis = TensorProductBasis( num_dims, poly_1d )
    pce = PCE( num_dims, order = 0, basis = basis, func_domain = domain )

    if ( solver_type == 1 ):
        num_folds = build_pts.shape[1]
    else:
        num_folds = 20

    index_norm_orders = numpy.linspace( 0.4, 1.0, 4 )    
    #if (solver_tupe == 1):
    #    index_norm_orders = [.4,.5,.6,.7,.8,.9,1.]

    #solvers = numpy.array( [solver_type], numpy.int32 )
    #cv_params_grid_array = cartesian_product( [solvers,orders] )
    cv_params_grid = []
    for index_norm_order in index_norm_orders:
        level = 2
        # determine what range of orders to consider. 
        # spefically consider any order that results in a pce with terms <= 3003
        while ( True ):
            #index_generator.set_parameters( num_dims, level, 
            #                                index_norm_order = index_norm_order)
            indices = index_generator.get_isotropic_indices( num_dims, level, 
                                                             index_norm_order )
            num_indices = len( indices )
            print level, index_norm_order, len ( indices )
            if ( num_indices > 3003 ):
                break
            
            cv_params = {}
            cv_params['solver'] = solver_type
            cv_params['order'] = level
            cv_params['index_norm_order'] = index_norm_order

            if ( cv_params['solver'] > 1 or 
                 num_indices <= build_pts.shape[1] ):
                # only do least squares on over-determined systems
                cv_params_grid.append( cv_params  )

            level += 1

    print cv_params_grid

    # cv_iterator = LeaveOneOutCrossValidationIterator()    
    cv_iterator = KFoldCrossValidationIterator( num_folds = num_folds )
    CV = GridSearchCrossValidation( cv_iterator, pce,
                                    use_predictor_cross_validation = True,
                                    use_fast_predictor_cross_validation = True )
    t0 = time.time()
    CV.run( build_pts, build_vals, cv_params_grid )
    time_taken = time.time() - t0
    print 'cross validation took ', time_taken, ' seconds'
    
    print "################"
    print "Best cv params: ", CV.best_cv_params
    print "Best cv score: ", CV.best_score
    print "################"

    #for i in xrange( len( CV.cv_params_set ) ):
    #    print CV.cv_params_set[i], CV.scores[i]

    best_order = CV.best_cv_params['order']
    best_index_norm_order = CV.best_cv_params['index_norm_order']

    best_pce = PCE( num_dims, 
                    order = best_order, 
                    basis = basis, 
                    func_domain = domain,
                    index_norm_order = best_index_norm_order)
    V = best_pce.vandermonde( build_pts ).T
    best_pce.set_solver( CV.best_cv_params['solver'] )
    if  cv_params['solver'] != 1 and cv_params['solver'] != 5:
        best_res_tol = CV.best_cv_params['norm_residual']
        best_pce.linear_solver.residual_tolerance = best_res_tol
        
    sols, sol_metrics = best_pce.linear_solver.solve( V, build_vals )
    coeff = sols[:,-1]

    best_pce.set_coefficients( coeff )
    error = abs( build_vals - best_pce.evaluate_set( build_pts ) )
    print max( error )

    print 'Evaluating best pce at test points'
    num_test_pts = test_pts.shape[1]
    pce_vals_pred = best_pce.evaluate_set( test_pts ).T
    print test_vals.shape, pce_vals_pred.shape
    error = test_vals.squeeze() - pce_vals_pred
    linf_error = numpy.max( numpy.absolute( error ) )
    l2_error = numpy.sqrt( numpy.dot( error.T, error ) / num_test_pts )
    mean = numpy.mean( pce_vals_pred )
    var =  numpy.var( pce_vals_pred )
    pce_mean = best_pce.mean()
    pce_var = best_pce.variance()

    if results_file is not None:
        results_file.write( '%1.15e' %linf_error + ',' +  '%1.15e' %l2_error + 
                            ',' +  '%1.15e' %mean + ',' +  '%1.15e' %var + 
                            ',%1.15e' %pce_mean + ',' + '%1.15e' %pce_var + '\n')

    print "linf error: ", linf_error
    print "l2 error: ", l2_error
    print "mean: ", mean 
    print "var: ", var
    print "pce mean: ", pce_mean 
    print "pce var: ", pce_var