def convo_combine(ms_orig, slope_array, aspect_array): """ Apply convolution to the orginal shielding factor for each direction and call the :term:`combine` module to consider the slope and aspect and remove conservitism to get final shielding multiplier values :param ms_orig: `file` the original shidelding factor map :param slope_array: :class:`numpy.ndarray` the input slope values :param aspect_array_reclassify: :class:`numpy.ndarray` input aspect values """ # import pdb # pdb.set_trace() ms_orig_ds = gdal.Open(ms_orig) # get image size, format, projection cols = ms_orig_ds.RasterXSize rows = ms_orig_ds.RasterYSize geotransform = ms_orig_ds.GetGeoTransform() x_left = geotransform[0] y_upper = -geotransform[3] pixelwidth = geotransform[1] pixelheight = -geotransform[5] lon, lat = get_lat_lon(x_left, y_upper, pixelwidth, pixelheight, cols, rows) band = ms_orig_ds.GetRasterBand(1) data = band.ReadAsArray(0, 0, cols, rows) if ms_orig_ds is None: log.info('Could not open {0}'.format(ms_orig)) sys.exit(1) x_m_array, y_m_array = get_pixel_size_grids(ms_orig_ds) pixelwidth = 0.5 * (np.mean(x_m_array) + np.mean(y_m_array)) log.info('pixelwidth is {0}'.format(pixelwidth)) ms_folder = os.path.dirname(ms_orig) nc_folder = pjoin(ms_folder, 'netcdf') file_name = os.path.basename(ms_orig) dire = ['w', 'e', 'n', 's', 'nw', 'ne', 'se', 'sw'] for one_dir in dire: log.info(one_dir) kernel_size = int(100.0 / pixelwidth) # if one_dir in ['w', 'e', 'n', 's']: # kernel_size = int(100.0 / pixelwidth) # else: # kernel_size = int(100.0 / pixelwidth) log.info('convolution kernel size is {0}'.format(str(kernel_size))) # if the resolution size is bigger than 100 m, no covolution just copy # the initial shielding factor to each direction if kernel_size > 0: outdata = np.zeros((rows, cols), np.float32) kern_dir = globals()['kern_' + one_dir] mask = kern_dir(kernel_size) outdata = blur_image(data, mask) else: outdata = data result = combine(outdata, slope_array, aspect_array, one_dir) del outdata # output format as netCDF4 tile_nc = pjoin( nc_folder, os.path.splitext(file_name)[0] + '_' + one_dir + '.nc') log.info("Saving terrain multiplier in netCDF file") save_multiplier('Ms', result, lat, lon, tile_nc) del result ms_orig_ds = None
def terrain(temp_tile, tile_extents_nobuffer): """ Performs core calculations to derive the terrain multiplier :param temp_tile: `file` the image file of the input tile of the land cover :param tile_extents_nobuffer: `tuple` the input tile extent without buffer """ # open the tile temp_dataset = gdal.Open(temp_tile) # get image size, format, projection cols = temp_dataset.RasterXSize rows = temp_dataset.RasterYSize bands = temp_dataset.RasterCount log.info('Input raster format is %s' % temp_dataset.GetDriver().ShortName + '/ %s' % temp_dataset.GetDriver().LongName) log.info('Image size is %s' % cols + 'x %s' % rows + 'x %s' % bands) # get georeference info geotransform = temp_dataset.GetGeoTransform() x_left = geotransform[0] y_upper = -geotransform[3] pixelwidth = geotransform[1] pixelheight = -geotransform[5] # get the tile's longitude and latitude values used to save output in # netcdf lon, lat = get_lat_lon(tile_extents_nobuffer, pixelwidth, pixelheight) # get the average grid size in metre of the tile x_m_array, y_m_array = get_pixel_size_grids(temp_dataset) gridwidth = 0.5 * (np.mean(x_m_array) + np.mean(y_m_array)) log.info('gridwidth is {0}'.format(gridwidth)) # produce the original terrain multiplier from the input terrain map log.info( 'Reclassify the terrain classes into initial terrain multipliers ...') band = temp_dataset.GetRasterBand(1) data = band.ReadAsArray(0, 0, cols, rows) nodata_value = band.GetNoDataValue() #if nodata_value is not None: # data[np.where(data == nodata_value)] = np.nan #else: # data[np.where(data is None)] = np.nan mz_init = get_terrain_table() reclassified_array = terrain_class2mz_orig(data, mz_init) # if the value is 0, it is nodata, if all 0s, empty tile if np.max(reclassified_array) == 0: log.info('Terrain dataset is all zeros. Terrain classification' 'will be skipped') return else: reclassified_array[reclassified_array == 0] = np.nan # assign nodata area as water with multiplier value 1 mask = np.isnan(reclassified_array) reclassified_array[mask] = 1.0 # convoulution of the original terrain multipler into different directions log.info('Moving average for each direction ...') dire = ['w', 'e', 'n', 's', 'nw', 'ne', 'se', 'sw'] # set avearage and lag distance used for convolution as per # AS/NZ 1170.2 (2011) including amendments avg_dist = 500. lag_dist = 200. for one_dir in dire: log.info(one_dir) if one_dir in ['w', 'e', 'n', 's']: avg_width = int(np.around(avg_dist / gridwidth)) lag_width = int(np.around(lag_dist / gridwidth)) else: # for the diagonal directions, the avg_width is the same for x and # y component of the diagonal distance (avg_dist). lag_width is # the same principle as the avg_width avg_width = int(avg_dist / (gridwidth * 1.414)) lag_width = int(lag_dist / (gridwidth * 1.414)) # if the tile is smaller than the lag distance, no convolultion if lag_width > reclassified_array.shape[0]: outdata = reclassified_array else: # if the tile is smaller than the upwind buffer, all the tile is in # buffer if (avg_width + lag_width) > reclassified_array.shape[0]: avg_width = reclassified_array.shape[0] - lag_width log.info('convolution average width ' + str(avg_width)) outdata = convo(one_dir, reclassified_array, avg_width, lag_width) outdata[mask] = np.nan # find output folder tile_folder = os.path.dirname(temp_tile) file_name = os.path.basename(temp_tile) # output format as netCDF4 mz_folder = pjoin(tile_folder, 'terrain') tile_nc = pjoin( mz_folder, os.path.splitext(file_name)[0] + '_mz_' + one_dir + '.nc') log.info("Saving terrain multiplier in netCDF file") outdata_nobuffer = clip_array(outdata, x_left, y_upper, pixelwidth, pixelheight, tile_extents_nobuffer) save_multiplier('Mz', outdata_nobuffer, lat, lon, tile_nc) del outdata temp_dataset = None log.info( 'finish terrain multiplier computation for this tile successfully')
def convo_combine(ms_orig, slope_array, aspect_array, tile_extents_nobuffer): """ Apply convolution to the orginal shielding factor for each direction and call the :term:`combine` module to consider the slope and aspect and remove conservitism to get final shielding multiplier values :param ms_orig: `file` the original shidelding factor map :param slope_array: :class:`numpy.ndarray` the input slope values :param aspect_array: :class:`numpy.ndarray` the input aspect values :param tile_extents_nobuffer: `tuple` the input tile extent without buffer """ ms_orig_ds = gdal.Open(ms_orig) if ms_orig_ds is None: log.info('Could not open ' + ms_orig) sys.exit(1) log.info('ms_orig is {0}'.format(ms_orig)) # get image size, format, projection cols = ms_orig_ds.RasterXSize rows = ms_orig_ds.RasterYSize geotransform = ms_orig_ds.GetGeoTransform() x_left = geotransform[0] y_upper = -geotransform[3] pixelwidth = geotransform[1] pixelheight = -geotransform[5] lon, lat = get_lat_lon(tile_extents_nobuffer, pixelwidth, pixelheight) band = ms_orig_ds.GetRasterBand(1) data = band.ReadAsArray(0, 0, cols, rows) if ms_orig_ds is None: log.info('Could not open {0}'.format(ms_orig)) sys.exit(1) x_m_array, y_m_array = get_pixel_size_grids(ms_orig_ds) gridwidth = 0.5 * (np.mean(x_m_array) + np.mean(y_m_array)) log.info('gridwidth is {0}'.format(gridwidth)) ms_folder = os.path.dirname(ms_orig) file_name = os.path.basename(ms_orig) dire = ['w', 'e', 'n', 's', 'nw', 'ne', 'se', 'sw'] for one_dir in dire: log.info(one_dir) kernel_size = int(100.0 / gridwidth) log.info('convolution kernel size is {0}'.format(str(kernel_size))) # if the resolution size is bigger than 100 m, no covolution just copy # the initial shielding factor to each direction if kernel_size > 0: outdata = np.zeros((rows, cols), np.float32) kern_dir = globals()['kern_' + one_dir] mask = kern_dir(kernel_size) outdata = blur_image(data, mask) else: outdata = data result = combine(outdata, slope_array, aspect_array, one_dir) del outdata # output format as netCDF4 tile_nc = pjoin(ms_folder, os.path.splitext(file_name)[0] + '_' + one_dir + '.nc') log.info("Saving shielding multiplier in netCDF file") result_nobuffer = clip_array(result, x_left, y_upper, pixelwidth, pixelheight, tile_extents_nobuffer) save_multiplier('Ms', result_nobuffer, lat, lon, tile_nc) del result ms_orig_ds = None os.remove(ms_orig) os.chdir(ms_folder) filelist = glob.glob('*.xml') log.debug("useless xml files: {0}".format(repr(filelist))) if len(filelist) != 0: for f in filelist: try: os.remove(f) except OSError: pass
def topomult(input_dem, tile_extents_nobuffer): """ Executes core topographic multiplier functionality :param input_dem: `file` the input tile of the DEM :param tile_extents_nobuffer: `tuple` the input tile extent without buffer """ # find output folder mh_folder = pjoin(os.path.dirname(input_dem), 'topographic') file_name = os.path.basename(input_dem) ds = gdal.Open(input_dem) nc = ds.RasterXSize nr = ds.RasterYSize geotransform = ds.GetGeoTransform() x_left = geotransform[0] y_upper = -geotransform[3] pixelwidth = geotransform[1] pixelheight = -geotransform[5] lon, lat = get_lat_lon(tile_extents_nobuffer, pixelwidth, pixelheight) band = ds.GetRasterBand(1) elevation_array = band.ReadAsArray(0, 0, nc, nr) nodata_value = band.GetNoDataValue() if nodata_value is not None: elevation_array[np.where(elevation_array == nodata_value)] = np.nan else: elevation_array[np.where(elevation_array is None)] = np.nan elevation_array_tran = np.transpose(elevation_array) data = elevation_array_tran.flatten() x_m_array, y_m_array = get_pixel_size_grids(ds) cellsize = 0.5 * (np.mean(x_m_array) + np.mean(y_m_array)) # Compute the starting positions along the boundaries depending on dir # Together, the direction and the starting position determines a line. # Note that the starting positions are defined # in terms of the 1-d index of the array. directions = ['n', 's', 'e', 'w', 'ne', 'nw', 'se', 'sw'] for direction in directions: log.info(direction) if len(direction) == 2: data_spacing = cellsize * math.sqrt(2) else: data_spacing = cellsize mhdata = np.ones(data.shape) strt_idx = [] if direction.find('n') >= 0: strt_idx = np.append(strt_idx, list(range(0, nr * nc, nr))) if direction.find('s') >= 0: strt_idx = np.append(strt_idx, list(range(nr - 1, nr * nc, nr))) if direction.find('e') >= 0: strt_idx = np.append(strt_idx, list(range((nc - 1) * nr, nr * nc))) if direction.find('w') >= 0: strt_idx = np.append(strt_idx, list(range(0, nr))) # For the diagonal directions the corner will have been counted twice # so get rid of the duplicates then loop over the data lines # (i.e. over the starting positions) strt_idx = np.unique(strt_idx) for ctr, idx in enumerate(strt_idx): log.debug('Processing path %3i' % ctr + ' of %3i' % len(strt_idx) + ', index %5i.' % idx) # Get a line of the data # path is a 1-d vector which gives the indices of the data path = make_path.make_path(nr, nc, idx, direction) line = data[path] line[np.isnan(line)] = 0. m = multiplier_calc.multiplier_calc(line, data_spacing) # write the line back to the data array m = np.transpose(m) mhdata[path] = m[0, ].flatten() # Reshape the result to matrix like mhdata = np.reshape(mhdata, (nc, nr)) mhdata = np.transpose(mhdata) # Remove the conservatism as described in the Reference mhdata = remove_conservatism(mhdata) # consider the Tasmania factor if x_left > 143.0 and y_upper > 40.0: mhdata = tasmania(mhdata, elevation_array) # smooth g = np.ones((3, 3)) / 9. mhsmooth = signal.convolve(mhdata, g, mode='same') mhsmooth[np.isnan(elevation_array)] = np.nan del mhdata # output format as netCDF4 tile_nc = pjoin( mh_folder, os.path.splitext(file_name)[0][:-4] + '_mt_' + direction + '.nc') mhsmooth_nobuffer = clip_array(mhsmooth, x_left, y_upper, pixelwidth, pixelheight, tile_extents_nobuffer) save_multiplier('Mt', mhsmooth_nobuffer, lat, lon, tile_nc) del mhsmooth log.info('Finished direction {0}'.format(direction)) ds = None
def terrain(cyclone_area, temp_tile): """ Performs core calculations to derive the terrain multiplier :param cyclone_area: none or `file` input tile of the cyclone area file. :param temp_tile: `file` the image file of the input tile of the land cover """ # open the tile temp_dataset = gdal.Open(temp_tile) # get image size, format, projection cols = temp_dataset.RasterXSize rows = temp_dataset.RasterYSize bands = temp_dataset.RasterCount log.info('Input raster format is %s' % temp_dataset.GetDriver().ShortName + '/ %s' % temp_dataset.GetDriver().LongName) log.info('Image size is %s' % cols + 'x %s' % rows + 'x %s' % bands) # get georeference info geotransform = temp_dataset.GetGeoTransform() x_left = geotransform[0] y_upper = -geotransform[3] pixelwidth = geotransform[1] pixelheight = -geotransform[5] # get the tile's longitude and latitude values used to save output in # netcdf lon, lat = get_lat_lon(x_left, y_upper, pixelwidth, pixelheight, cols, rows) # get the average grid size in metre of the tile x_m_array, y_m_array = get_pixel_size_grids(temp_dataset) pixelwidth = 0.5 * (np.mean(x_m_array) + np.mean(y_m_array)) log.info('pixelwidth is {0}'.format(pixelwidth)) # produce the original terrain multiplier from the input terrain map log.info( 'Reclassfy the terrain classes into initial terrain multipliers ...') band = temp_dataset.GetRasterBand(1) data = band.ReadAsArray(0, 0, cols, rows) reclassified_array = terrain_class2mz_orig(cyclone_area, data) # if the value is 0, it is nodata reclassified_array[reclassified_array == 0] = np.nan # assign nodata area as average non-cycl multiplier value mask = np.isnan(reclassified_array) reclassified_array[mask] = 0.931 # convoulution of the original terrain multipler into different directions log.info('Moving average for each direction ...') dire = ['w', 'e', 'n', 's', 'nw', 'ne', 'se', 'sw'] # set the terrain buffer used for convolution as per AS/NZ 1170.2 (2011) terrain_buffer = 1000. for one_dir in dire: log.info(one_dir) if one_dir in ['w', 'e', 'n', 's']: filter_width = int(terrain_buffer / pixelwidth) else: filter_width = int(terrain_buffer / (pixelwidth * 1.414)) # if the tile is smaller than the upwind buffer, all the tile is in # buffer if filter_width > reclassified_array.shape[0]: filter_width = reclassified_array.shape[0] log.info('convolution filter width ' + str(filter_width)) convo_dir = globals()['convo_' + one_dir] outdata = convo_dir(reclassified_array, filter_width) outdata[mask] = np.nan # find output folder tile_folder = os.path.dirname(temp_tile) file_name = os.path.basename(temp_tile) # output format as netCDF4 nc_folder = pjoin(pjoin(tile_folder, 'terrain'), 'netcdf') tile_nc = pjoin( nc_folder, os.path.splitext(file_name)[0] + '_mz_' + one_dir + '.nc') log.info("Saving terrain multiplier in netCDF file") save_multiplier('Mz', outdata, lat, lon, tile_nc) del outdata temp_dataset = None log.info( 'finish terrain multiplier computation for this tile successfully')
def convo_combine(ms_orig, slope_array, aspect_array, tile_extents_nobuffer): """ Apply convolution to the orginal shielding factor for each direction and call the :term:`combine` module to consider the slope and aspect and remove conservitism to get final shielding multiplier values :param ms_orig: `file` the original shidelding factor map :param slope_array: :class:`numpy.ndarray` the input slope values :param aspect_array: :class:`numpy.ndarray` the input aspect values :param tile_extents_nobuffer: `tuple` the input tile extent without buffer """ ms_orig_ds = gdal.Open(ms_orig) if ms_orig_ds is None: log.info('Could not open ' + ms_orig) sys.exit(1) log.info('ms_orig is {0}'.format(ms_orig)) # get image size, format, projection cols = ms_orig_ds.RasterXSize rows = ms_orig_ds.RasterYSize geotransform = ms_orig_ds.GetGeoTransform() x_left = geotransform[0] y_upper = -geotransform[3] pixelwidth = geotransform[1] pixelheight = -geotransform[5] lon, lat = get_lat_lon(tile_extents_nobuffer, pixelwidth, pixelheight) band = ms_orig_ds.GetRasterBand(1) data = band.ReadAsArray(0, 0, cols, rows) if ms_orig_ds is None: log.info('Could not open {0}'.format(ms_orig)) sys.exit(1) x_m_array, y_m_array = get_pixel_size_grids(ms_orig_ds) gridwidth = 0.5 * (np.mean(x_m_array) + np.mean(y_m_array)) log.info('gridwidth is {0}'.format(gridwidth)) ms_folder = os.path.dirname(ms_orig) file_name = os.path.basename(ms_orig) dire = ['w', 'e', 'n', 's', 'nw', 'ne', 'se', 'sw'] for one_dir in dire: log.info(one_dir) kernel_size = int(100.0 / gridwidth) log.info('convolution kernel size is {0}'.format(str(kernel_size))) # if the resolution size is bigger than 100 m, no covolution just copy # the initial shielding factor to each direction if kernel_size > 0: outdata = np.zeros((rows, cols), np.float32) kern_dir = globals()['kern_' + one_dir] mask = kern_dir(kernel_size) outdata = blur_image(data, mask) else: outdata = data result = combine(outdata, slope_array, aspect_array, one_dir) log.debug('Maximum shielding value is {0}'.format(result.max())) log.debug('Minimum shielding value is {0}'.format(result.min())) del outdata # output format as netCDF4 tile_nc = pjoin( ms_folder, os.path.splitext(file_name)[0] + '_' + one_dir + '.nc') log.info("Saving shielding multiplier in netCDF file") result_nobuffer = clip_array(result, x_left, y_upper, pixelwidth, pixelheight, tile_extents_nobuffer) save_multiplier('Ms', result_nobuffer, lat, lon, tile_nc) del result ms_orig_ds = None try: os.remove(ms_orig) except: pass os.chdir(ms_folder) filelist = glob.glob('*.xml') log.debug("useless xml files: {0}".format(repr(filelist))) if len(filelist) != 0: for f in filelist: try: os.remove(f) except OSError: pass
def topomult(input_dem): """ Executes core topographic multiplier functionality :param input_dem: `file` the input tile of the DEM """ # find output folder mh_folder = pjoin(os.path.dirname(input_dem), 'topographic') file_name = os.path.basename(input_dem) nc_folder = pjoin(mh_folder, 'netcdf') ds = gdal.Open(input_dem) nc = ds.RasterXSize nr = ds.RasterYSize geotransform = ds.GetGeoTransform() x_left = geotransform[0] y_upper = -geotransform[3] pixelwidth = geotransform[1] pixelheight = -geotransform[5] lon, lat = get_lat_lon(x_left, y_upper, pixelwidth, pixelheight, nc, nr) band = ds.GetRasterBand(1) elevation_array = band.ReadAsArray(0, 0, nc, nr) elevation_array[np.where(elevation_array < -0.001)] = np.nan elevation_array_tran = np.transpose(elevation_array) data = elevation_array_tran.flatten() x_m_array, y_m_array = get_pixel_size_grids(ds) cellsize = 0.5 * (np.mean(x_m_array) + np.mean(y_m_array)) # Compute the starting positions along the boundaries depending on dir # Together, the direction and the starting position determines a line. # Note that the starting positions are defined # in terms of the 1-d index of the array. directions = ['n', 's', 'e', 'w', 'ne', 'nw', 'se', 'sw'] for direction in directions: log.info(direction) if len(direction) == 2: data_spacing = cellsize * math.sqrt(2) else: data_spacing = cellsize mhdata = np.ones(data.shape) strt_idx = [] if direction.find('n') >= 0: strt_idx = np.append(strt_idx, list(range(0, nr * nc, nr))) if direction.find('s') >= 0: strt_idx = np.append(strt_idx, list(range(nr - 1, nr * nc, nr))) if direction.find('e') >= 0: strt_idx = np.append(strt_idx, list(range((nc - 1) * nr, nr * nc))) if direction.find('w') >= 0: strt_idx = np.append(strt_idx, list(range(0, nr))) # For the diagonal directions the corner will have been counted twice # so get rid of the duplicates then loop over the data lines # (i.e. over the starting positions) strt_idx = np.unique(strt_idx) for ctr, idx in enumerate(strt_idx): log.debug('Processing path %3i' % ctr + ' of %3i' % len(strt_idx) + ', index %5i.' % idx) # Get a line of the data # path is a 1-d vector which gives the indices of the data path = make_path.make_path(nr, nc, idx, direction) line = data[path] line[np.isnan(line)] = 0. m = multiplier_calc.multiplier_calc(line, data_spacing) # write the line back to the data array m = np.transpose(m) mhdata[path] = m[0, ].flatten() # Reshape the result to matrix like mhdata = np.reshape(mhdata, (nc, nr)) mhdata = np.transpose(mhdata) # smooth g = np.ones((3, 3)) / 9. mhsmooth = signal.convolve(mhdata, g, mode='same') mhsmooth[np.isnan(elevation_array)] = np.nan del mhdata # output format as netCDF4 tile_nc = pjoin(nc_folder, os.path.splitext(file_name)[0][:-4] + '_mt_' + direction + '.nc') save_multiplier('Mt', mhsmooth, lat, lon, tile_nc) del mhsmooth log.info('Finished direction {0}'.format(direction)) ds = None