def main(): global nn_input_dim, nn_output_dim, gamma iters = 15000 hl_nodes = 10 gamma_trials = [0.01, 0.1, 0, 1, 10, 100] X_train, y_train, X_test, y_test = get_data() for gamma in gamma_trials: print "\n-------For gamma = %f and number of hidden layers = %d----------\n" % ( gamma, hl_nodes) model = train_model(X_train, y_train, hl_nodes, 4, iters, False) t = predict(X_train, model) f1 = class_stats(t, y_train, 4) acc_train.append(f1) y_pred = predict(X_test, model) f1 = class_stats(y_pred, y_test, 4) acc_test.append(f1) plot_points(gamma_trials, acc_train, 'gamma', 'accuray') plot_points(gamma_trials, acc_test, 'gamma', 'accuracy')
def perform_multinomial_nb_dir(params): acc_val = [] for s in [1, 3, 5, 7, 9]: train_set, train_label, test_set, test_label = create_datasets(s) y_pred, y_score = predict_multinomial_nb_dir(train_set, train_label, test_set, params) plot_pr_curve(test_label, y_score) acc, _ = class_stats(y_pred, test_label, 2) acc_val.append(acc) print sum(acc_val) / 5
y_train = load_data_csv("DS3/train_labels.csv") X_train_proj = lda_projected_X(X_train, y_train, 1) # Loading test data and projecting into derived space X_test = load_data_csv("DS3/test.csv") y_test = load_data_csv("DS3/test_labels.csv") X_test_proj = lda_projected_X(X_test, y_test, 1) # Re-encoding output y_train[y_train == 1] = 0 y_train[y_train == 2] = 1 y_test[y_test == 1] = 0 y_test[y_test == 2] = 1 # Fitting model lr = linear_model.LinearRegression() lr.fit(X_train_proj, y_train) # Prediction y_pred_actual = lr.predict(X_test_proj) y_pred = y_pred_actual.copy() # Thresholding y_pred[y_pred < 0.5] = 0 y_pred[y_pred >= 0.5] = 1 # Plotting and printing out results plot_3d(X_test, y_test) class_stats(y_pred, y_test, 2) plot_2d_model(X_test_proj, y_test, lr.coef_[0], lr.intercept_)
def print_performance_metrics(model, X_test, y_test): print "\n----Model performance metrics------\n" y_pred = model.predict(X_test) class_stats(y_pred, y_test, 4)
def perform_multinomial_nb(): train_set, train_label, test_set, test_label = create_datasets(1) y_pred, y_score = predict_multinomial_nb(train_set, train_label, test_set) plot_pr_curve(test_label, y_score) class_stats(y_pred, test_label, 2)