예제 #1
0
파일: make_plots.py 프로젝트: rtimms/SPMeCC
def plot_temperature(soln, mesh, param):
    # Get variables
    c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)

    # Font stuff
    plt.rc("text", usetex=True)
    plt.rc("font", family="serif")

    # Plot temperature
    fig = plt.figure()
    plt.subplot(2, 1, 1)
    plt.plot(
        soln.t * param.tau_d_star,
        T0 * param.Delta_T_star + param.T_inf_star,
        label=r"$T^0 + \delta T^1$",
    )
    plt.xlabel(r"$t$ [s]", fontsize=11)
    plt.ylabel(r"$T$", fontsize=11)
    plt.subplot(2, 1, 2)
    plt.plot(
        soln.t * param.tau_d_star,
        (T0 + param.delta * T1) * param.Delta_T_star + param.T_inf_star,
        label=r"$T^0 + \delta T^1&",
    )
    plt.xlabel(r"$t$ [s]", fontsize=11)
    plt.ylabel(r"$T$", fontsize=11)
    fig.tight_layout()
예제 #2
0
def plot_surface_concentration(soln, mesh, param):
    # Get variables
    c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)

    # Surface concentration for BV
    c_n_surf = c_n[-1, :] + (c_n[-1, :] - c_n[-2, :]) / 2
    c_p_surf = c_p[-1, :] + (c_p[-1, :] - c_p[-2, :]) / 2

    # LIONSIMBA results
    # t column 0, c_n column 3, c_p column 4
    t_LION, c_n_LION, c_p_LION = np.loadtxt('LIONSIMBA001_t.txt',
                                            usecols=(0, 3, 4),
                                            unpack=True)

    # Font stuff
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')

    # Plot surface concentrations
    fig = plt.figure()
    plt.subplot(1, 2, 1)
    plt.plot(soln.t * param.tau_d_star, c_n_surf * param.c_n_max_star,
             label='SPMe')
    plt.plot(t_LION, c_n_LION, 'o', label='LIONSIMBA')
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.ylabel('Surface 'r'$c_{{\mathrm{{n}}}}$', fontsize=11)
    plt.legend()
    plt.subplot(1, 2, 2)
    plt.plot(soln.t * param.tau_d_star, c_p_surf * param.c_p_max_star,
             label='SPMe')
    plt.plot(t_LION, c_p_LION, 'o', label='LIONSIMBA')
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.ylabel('Surface 'r'$c_{{\mathrm{{p}}}}$', fontsize=11)
    plt.legend()
    fig.tight_layout()
예제 #3
0
def plot_OCP(soln, mesh, param):
    # Get variables
    c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)
    t = soln.t

    # Surface concentration for BV
    c_n_surf = c_n[-1, :] + (c_n[-1, :] - c_n[-2, :]) / 2
    c_p_surf = c_p[-1, :] + (c_p[-1, :] - c_p[-2, :]) / 2

    # LIONSIMBA results
    # t column 0, OCP 14 - 17
    t_LION, U_n, U_p, dUdT_n, dUdT_p = np.loadtxt('LIONSIMBA001_t.txt',
                                                  usecols=(0, 14, 15, 16, 17),
                                                  unpack=True)
    # Font stuff
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')

    # Plot OCP and entropic coefficient at a fixed T
    fig = plt.figure()
    plt.subplot(2, 2, 1)
    plt.plot(t * param.tau_d_star,
             ocp.U_n(c_n_surf, T0, param) * param.Phi_star)
    plt.plot(t_LION, U_n, 'o')
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.ylabel(r'$U_{{\mathrm{{n}}}}$', fontsize=11)
    plt.subplot(2, 2, 3)
    plt.plot(t * param.tau_d_star,
             ocp.dUdT_n(c_n_surf, param) * param.Phi_star / param.Delta_T_star)
    plt.plot(t_LION, dUdT_n, 'o')
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.ylabel(r'$\mathrm{{d}}U_{{\mathrm{{n}}}}$'
               r'$ / \mathrm{{d}}T$', fontsize=11)
    plt.subplot(2, 2, 2)
    plt.plot(t * param.tau_d_star,
             ocp.U_p(c_p_surf, T0, param) * param.Phi_star)
    plt.plot(t_LION, U_p, 'o')
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.ylabel(r'$U_{{\mathrm{{p}}}}$', fontsize=11)
    plt.subplot(2, 2, 4)
    plt.plot(t * param.tau_d_star,
             ocp.dUdT_p(c_p_surf, param) * param.Phi_star / param.Delta_T_star)
    plt.plot(t_LION, dUdT_p, 'o')
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.ylabel(r'$\mathrm{{d}}U_{{\mathrm{{p}}}}$'
               r'$ / \mathrm{{d}}T$', fontsize=11)
    fig.tight_layout()
예제 #4
0
def plot_electrolyte_concentration(soln, mesh, param, time):
    # Get variables
    c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)

    # LIONSIMBA results
    if time == 1800:
        c_e_LION = [167.2502, 163.5963, 156.2971, 145.3744, 130.8719, 112.8752,
                    91.5430, 67.1453, 40.1014, 10.9754, -5.1804, -6.6067,
                    -8.0319, -9.4560, -10.8789, -12.3008, -13.7216, -15.1413,
                    -16.5598, -17.9773, -32.3561, -56.7032, -77.9743, -96.3081,
                    -111.8209, -124.6087, -134.7493, -142.3031, -147.3146,
                    -149.8131]
        x_LION = [0.0228, 0.0684, 0.1140, 0.1596, 0.2052, 0.2508, 0.2964,
                  0.3420, 0.3876, 0.4332, 0.4624, 0.4754, 0.4883, 0.5013,
                  0.5142, 0.5272, 0.5402, 0.5531, 0.5661, 0.5790, 0.6062,
                  0.6477, 0.6891, 0.7306, 0.7720, 0.8135, 0.8549, 0.8964,
                  0.9378, 0.9793]
    else:
        raise ValueError('No LIONSIMBA data for this time!')
    # Font stuff
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')

    # Plot electrolyte concentration at time

    # Find index closest to time in seconds
    idx = (np.abs(soln.t * param.tau_d_star - time)).argmin()

    fig = plt.figure()
    plt.plot((mesh.x_n[1:] + mesh.x_n[0:-1])/2,
             param.c_e_typ_star * param.delta * c_e_n[:, idx], '-',
             c='#1f77b4')
    plt.plot((mesh.x_s[1:] + mesh.x_s[0:-1])/2,
             param.c_e_typ_star * param.delta * c_e_s[:, idx], '-',
             c='#1f77b4')
    plt.plot((mesh.x_p[1:] + mesh.x_p[0:-1])/2,
             param.c_e_typ_star * param.delta * c_e_p[:, idx], '-',
             c='#1f77b4',
             label="SPMe")
    plt.plot(x_LION, c_e_LION, 'o', c='#ff7f0e', label="LIONSIMBA")
    plt.xlim([0, 1])
    plt.xlabel(r'$x$', fontsize=11)
    plt.ylabel(r'$c_{{\mathrm{{e}}}}^* - c_{{\mathrm{{e,typ}}}}^*$'
               r'[mol/m$^3$]', fontsize=11)
    plt.legend()
    fig.tight_layout()
예제 #5
0
파일: make_plots.py 프로젝트: rtimms/SPMeCC
def plot_surface_concentration(soln, mesh, param):
    # Get variables
    c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)

    # Surface concentration for BV
    c_n_surf = c_n[-1, :] + (c_n[-1, :] - c_n[-2, :]) / 2
    c_p_surf = c_p[-1, :] + (c_p[-1, :] - c_p[-2, :]) / 2

    # Font stuff
    plt.rc("text", usetex=True)
    plt.rc("font", family="serif")

    # Plot surface concentrations
    fig = plt.figure()
    plt.subplot(1, 2, 1)
    plt.plot(soln.t * param.tau_d_star, c_n_surf)
    plt.xlabel(r"$t$ [s]", fontsize=11)
    plt.ylabel("Surface " r"$c_{{\mathrm{{n}}}}$", fontsize=11)
    plt.subplot(1, 2, 2)
    plt.plot(soln.t * param.tau_d_star, c_p_surf)
    plt.xlabel(r"$t$ [s]", fontsize=11)
    plt.ylabel("Surface " r"$c_{{\mathrm{{p}}}}$", fontsize=11)
    fig.tight_layout()
예제 #6
0
    def __init__(self, soln, mesh, R, param):
        """
        Computes terminal voltage components from SPMeCC model.
        Parameters
        ----------
        soln: array_like
            Object containing solution
        mesh: object
            Object containing information about the mesh.
        R: float
            The current collector effective resistance.
        param: object
            Object containing model parameters.
        """
        # Get variables
        c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)
        t = soln.t

        # Surface concentration for BV
        c_n_surf = c_n[-1, :] + (c_n[-1, :] - c_n[-2, :]) / 2
        c_p_surf = c_p[-1, :] + (c_p[-1, :] - c_p[-2, :]) / 2

        # Evaluate I_app
        I_app = current(t, param)

        self.U_eq_init = open_circuit(param.c_n_0, param.c_p_0, param.T_0, 0,
                                      param)
        self.U_eq = open_circuit(c_n_surf, c_p_surf, T0, T1, param)
        self.eta_r = reac_overpotential(c_n_surf, c_p_surf, c_e_n, c_e_p, T0,
                                        mesh, param, I_app)
        self.eta_c = conc_overpotential(c_e_n, c_e_p, mesh, param)
        self.Delta_Phi_elec = electrolyte_ohmic(param, I_app)
        self.Delta_Phi_solid = solid_ohmic(param, I_app)
        self.Delta_Phi_cc = cc_ohmic(R, param, I_app)
        self.v_term = (self.U_eq + self.eta_r + self.eta_c +
                       self.Delta_Phi_elec + self.Delta_Phi_solid +
                       self.Delta_Phi_cc)
예제 #7
0
def plot_temperature(soln, mesh, param):
    # Get variables
    c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)

    # LIONSIMBA results
    # t columun 0, V column 2
    t_LION, T_LION = np.loadtxt('LIONSIMBA001_t.txt',
                                usecols=(0, 2),
                                unpack=True)

    # Font stuff
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')

    # Plot temperature
    fig = plt.figure()
    plt.plot(soln.t * param.tau_d_star,
             (T0 + param.delta * T1) * param.Delta_T_star + param.T_inf_star,
             label='SPMe')
    plt.plot(t_LION, T_LION, 'o', label='LIONSIMBA')
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.ylabel(r'$T$', fontsize=11)
    plt.legend()
    fig.tight_layout()
예제 #8
0
파일: make_plots.py 프로젝트: rtimms/SPMeCC
def plot_electrolyte_concentration(soln, mesh, param):
    # Get variables
    c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)

    # Evaluate steady profiles
    # (need to multiply by I_app to get value at a given time)
    c_e_n_steady = ((1 / param.Ly) * (param.nu * (1 - param.t_plus)) * (
        2 * (param.L_p**2 / param.epsilon_p**param.brug -
             param.L_n**2 / param.epsilon_n**param.brug) + 3 * param.L_s *
        (param.L_p - param.L_n + 1) / param.epsilon_s**param.brug + 3 *
        (param.L_n**2 - mesh.x_n**2) / param.L_n / param.epsilon_n**param.brug)
                    / 6 / param.electrolyte_diffusivity(1))
    c_e_s_steady = ((1 / param.Ly) * (param.nu * (1 - param.t_plus)) *
                    (2 * (param.L_p**2 / param.epsilon_p**param.brug -
                          param.L_n**2 / param.epsilon_n**param.brug) + 3 *
                     (param.L_n**2 - param.L_p**2 + 1 - 2 * mesh.x_s) /
                     param.epsilon_s**param.brug) / 6 /
                    param.electrolyte_diffusivity(1))
    c_e_p_steady = (
        (1 / param.Ly) * (param.nu * (1 - param.t_plus)) *
        (2 * (param.L_p**2 / param.epsilon_p**param.brug -
              param.L_n**2 / param.epsilon_n**param.brug) + 3 * param.L_s *
         (param.L_p - param.L_n - 1) / param.epsilon_s**param.brug + 3 *
         ((1 - mesh.x_p)**2 - param.L_p**2) / param.L_p /
         param.epsilon_p**param.brug) / 6 / param.electrolyte_diffusivity(1))

    # Font stuff
    plt.rc("text", usetex=True)
    plt.rc("font", family="serif")

    # Plot over time
    fig = plt.figure()
    for i in range(1, np.size(soln.t)):
        # Evaluate I_app
        I_app = current(soln.t[i - 1], param)
        plt.clf()
        plt.plot(
            (mesh.x_n[1:] + mesh.x_n[0:-1]) / 2,
            param.c_e_typ_star * param.delta * c_e_n[:, i],
            "b-",
        )
        plt.plot(mesh.x_n,
                 param.c_e_typ_star * param.delta * c_e_n_steady * I_app,
                 "r--")
        plt.plot(
            (mesh.x_s[1:] + mesh.x_s[0:-1]) / 2,
            param.c_e_typ_star * param.delta * c_e_s[:, i],
            "b-",
        )
        plt.plot(mesh.x_s,
                 param.c_e_typ_star * param.delta * c_e_s_steady * I_app,
                 "r--")
        plt.plot(
            (mesh.x_p[1:] + mesh.x_p[0:-1]) / 2,
            param.c_e_typ_star * param.delta * c_e_p[:, i],
            "b-",
            label="Unsteady",
        )
        plt.plot(
            mesh.x_p,
            param.c_e_typ_star * param.delta * c_e_p_steady * I_app,
            "r--",
            label="Steady",
        )
        plt.xlim([0, 1])
        plt.xlabel(r"$x$", fontsize=11)
        plt.ylabel(
            r"$c_{{\mathrm{{e}}}}^* - c_{{\mathrm{{e,typ}}}}^*$"
            r"[mol/m$^3$]",
            fontsize=11,
        )
        plt.legend()
        fig.tight_layout()
        plt.pause(1)
예제 #9
0
파일: make_plots.py 프로젝트: rtimms/SPMeCC
def plot_heat_generation(soln, mesh, R_cn, R_cp, param):
    # Get variables
    c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)
    t = soln.t

    # Surface concentration for BV
    c_n_surf = c_n[-1, :] + (c_n[-1, :] - c_n[-2, :]) / 2
    c_p_surf = c_p[-1, :] + (c_p[-1, :] - c_p[-2, :]) / 2

    # Electrode avergaed electrolyte concentrations and the values at the
    # electrode/separator interfaces needed for heat source terms
    c_e_n_bar = np.trapz(c_e_n, dx=mesh.dx_n, axis=0) / param.L_n
    c_e_p_bar = np.trapz(c_e_p, dx=mesh.dx_p, axis=0) / param.L_p
    c_e_neg_sep = (c_e_n[-1, :] + c_e_s[0, :]) / 2
    c_e_pos_sep = (c_e_s[-1, :] + c_e_p[0, :]) / 2

    # Evaluate I_app
    I_app = current(t, param)

    # Font stuff
    plt.rc("text", usetex=True)
    plt.rc("font", family="serif")

    # Make plots
    fig = plt.figure(figsize=(15, 9))

    plt.subplot(2, 5, 2)
    plt.plot(0, 0, label="Ohm")
    plt.plot(t * param.tau_d_star,
             heat.rxn_n_0(T0, c_n_surf, param, I_app),
             label="rxn")
    plt.plot(t * param.tau_d_star,
             heat.rev_n_0(T0, c_n_surf, param, I_app),
             label="rev")
    plt.plot(
        t * param.tau_d_star,
        heat.rxn_n_0(T0, c_n_surf, param, I_app) +
        heat.rev_n_0(T0, c_n_surf, param, I_app),
        label="Total",
    )
    plt.xlabel(r"$t$ [s]", fontsize=11)
    plt.title("Negative leading-order", fontsize=11)
    plt.legend()

    plt.subplot(2, 5, 4)
    plt.plot(0, 0, label="Ohm")
    plt.plot(t * param.tau_d_star,
             heat.rxn_p_0(T0, c_p_surf, param, I_app),
             label="rxn")
    plt.plot(t * param.tau_d_star,
             heat.rev_p_0(T0, c_p_surf, param, I_app),
             label="rev")
    plt.plot(
        t * param.tau_d_star,
        heat.rxn_p_0(T0, c_p_surf, param, I_app) +
        heat.rev_p_0(T0, c_p_surf, param, I_app),
        label="Total",
    )
    plt.xlabel(r"$t$ [s]", fontsize=11)
    plt.title("Positive leading-order", fontsize=11)
    plt.legend()

    plt.subplot(2, 5, 7)
    plt.plot(
        t * param.tau_d_star,
        heat.ohmic_n_1(c_e_n_bar, c_e_neg_sep, param, I_app),
        label="Ohm",
    )
    plt.plot(
        t * param.tau_d_star,
        heat.rxn_n_1(T0, T1, c_n_surf, c_e_n_bar, param, I_app),
        label="rxn",
    )
    plt.plot(t * param.tau_d_star,
             heat.rev_n_1(T1, c_n_surf, param, I_app),
             label="rev")
    plt.plot(
        t * param.tau_d_star,
        heat.ohmic_n_1(c_e_n_bar, c_e_neg_sep, param, I_app) +
        heat.rxn_n_1(T0, T1, c_n_surf, c_e_n_bar, param, I_app) +
        heat.rev_n_1(T1, c_n_surf, param, I_app),
        label="Total",
    )
    plt.xlabel(r"$t$ [s]", fontsize=11)
    plt.title("Negative first-order", fontsize=11)
    plt.legend()

    plt.subplot(2, 5, 8)
    plt.plot(
        t * param.tau_d_star,
        heat.ohmic_s_1(c_e_neg_sep, c_e_pos_sep, param, I_app),
        label="Ohm",
    )
    plt.xlabel(r"$t$ [s]", fontsize=11)
    plt.title("Separator first-order", fontsize=11)
    plt.legend()

    plt.subplot(2, 5, 9)
    plt.plot(
        t * param.tau_d_star,
        heat.ohmic_p_1(c_e_p_bar, c_e_pos_sep, param, I_app),
        label="Ohm",
    )
    plt.plot(
        t * param.tau_d_star,
        heat.rxn_p_1(T0, T1, c_p_surf, c_e_p_bar, param, I_app),
        label="rxn",
    )
    plt.plot(t * param.tau_d_star,
             heat.rev_p_1(T1, c_p_surf, param, I_app),
             label="rev")
    plt.plot(
        t * param.tau_d_star,
        heat.ohmic_p_1(c_e_p_bar, c_e_pos_sep, param, I_app) +
        heat.rxn_p_1(T0, T1, c_p_surf, c_e_p_bar, param, I_app) +
        heat.rev_p_1(T1, c_p_surf, param, I_app),
        label="Total",
    )
    plt.xlabel(r"$t$ [s]", fontsize=11)
    plt.title("Positive first-order", fontsize=11)
    plt.legend()

    if R_cn == 0:
        plt.subplot(2, 5, 1)
        plt.plot(t * param.tau_d_star, (I_app / param.Ly)**2 / param.sigma_cn,
                 label="Ohm")
        plt.xlabel(r"$t$ [s]", fontsize=11)
        plt.title("Negative c.c. 1D approx.", fontsize=11)
        plt.legend()
    else:
        plt.subplot(2, 5, 6)
        plt.plot(t * param.tau_d_star,
                 heat.ohmic_cc_1(R_cn, param, I_app),
                 label="Ohm")
        plt.xlabel(r"$t$ [s]", fontsize=11)
        plt.title("Negative c.c. first-order", fontsize=11)
        plt.legend()

    if R_cp == 0:
        plt.subplot(2, 5, 5)
        plt.plot(t * param.tau_d_star, (I_app / param.Ly)**2 / param.sigma_cp,
                 label="Ohm")
        plt.xlabel(r"$t$ [s]", fontsize=11)
        plt.title("Positive c.c. 1D approx.", fontsize=11)
        plt.legend()
    else:
        plt.subplot(2, 5, 10)
        plt.plot(t * param.tau_d_star,
                 heat.ohmic_cc_1(R_cp, param, I_app),
                 label="Ohm")
        plt.xlabel(r"$t$ [s]", fontsize=11)
        plt.title("Positive c.c. first-order", fontsize=11)
        plt.legend()

    fig.tight_layout()
예제 #10
0
def plot_heat_generation(soln, mesh, param):
    # Get variables
    c_n, c_p, c_e_n, c_e_s, c_e_p, T0, T1 = get_vars_time(soln.y, mesh)
    t = soln.t

    # Surface concentration for BV
    c_n_surf = c_n[-1, :] + (c_n[-1, :] - c_n[-2, :]) / 2
    c_p_surf = c_p[-1, :] + (c_p[-1, :] - c_p[-2, :]) / 2

    # Electrode avergaed electrolyte concentrations and the values at the
    # electrode/separator interfaces needed for heat source terms
    c_e_n_bar = np.trapz(c_e_n,
                         dx=mesh.dx_n, axis=0) / param.L_n
    c_e_p_bar = np.trapz(c_e_p,
                         dx=mesh.dx_p, axis=0) / param.L_p
    c_e_neg_sep = (c_e_n[-1, :] + c_e_s[0, :]) / 2
    c_e_pos_sep = (c_e_s[-1, :] + c_e_p[0, :]) / 2

    # Evaluate I_app
    I_app = current(t, param)

    # LIONSIMBA results
    # t column 0, heat generation columns 5-13
    t_LION, Q_n, Q_p = np.loadtxt('LIONSIMBA001_t.txt',
                                  usecols=(0, 12, 13),
                                  unpack=True)
    Ohm_n, Rxn_n, Rev_n = np.loadtxt('LIONSIMBA001_t.txt',
                                     usecols=(5, 8, 10),
                                     unpack=True)
    Ohm_s = np.loadtxt('LIONSIMBA001_t.txt',
                       usecols=(6),
                       unpack=True)
    Ohm_p, Rxn_p, Rev_p = np.loadtxt('LIONSIMBA001_t.txt',
                                     usecols=(7, 9, 11),
                                     unpack=True)

    # Scale for heat generation in SPMe
    scale = param.I_star * param.Phi_star / param.Lx_star

    # Font stuff
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')

    # Make plots
    fig = plt.figure(figsize=(15, 9))

    plt.subplot(1, 3, 1)
    plt.plot(t * param.tau_d_star,
             param.delta * scale
             * heat.ohmic_n_1(c_e_n_bar, c_e_neg_sep, param, I_app),
             label="Ohm")
    plt.plot(t * param.tau_d_star,
             heat.rxn_n_0(T0, c_n_surf, param, I_app) * scale
             + param.delta * scale
             * heat.rxn_n_1(T0, T1, c_n_surf, c_e_n_bar, param, I_app),
             label="rxn")
    plt.plot(t * param.tau_d_star,
             heat.rev_n_0(T0, c_n_surf, param, I_app) * scale
             + param.delta * scale
             * heat.rev_n_1(T1, c_n_surf, param, I_app),
             label="rev")
    plt.plot(t * param.tau_d_star,
             heat.rxn_n_0(T0, c_n_surf, param, I_app) * scale
             + heat.rev_n_0(T0, c_n_surf, param, I_app) * scale
             + param.delta * scale
             * heat.ohmic_n_1(c_e_n_bar, c_e_neg_sep, param, I_app)
             + param.delta * scale
             * heat.rxn_n_1(T0, T1, c_n_surf, c_e_n_bar, param, I_app)
             + param.delta * scale
             * heat.rev_n_1(T1, c_n_surf, param, I_app),
             label="Total")
    plt.plot(t_LION, Ohm_n, 'o', c='#1f77b4')
    plt.plot(t_LION, Rxn_n, 'x', c='#ff7f0e')
    plt.plot(t_LION, Rev_n, '^', c='#2ca02c')
    plt.plot(t_LION, Q_n, 's', c='#d62728')
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.title('Negative electrode', fontsize=11)
    plt.legend()

    plt.subplot(1, 3, 3)
    plt.plot(t * param.tau_d_star,
             param.delta * scale
             * heat.ohmic_p_1(c_e_neg_sep, c_e_pos_sep, param, I_app))
    plt.plot(t * param.tau_d_star,
             heat.rxn_p_0(T0, c_p_surf, param, I_app) * scale
             + param.delta * scale
             * heat.rxn_p_1(T0, T1, c_p_surf, c_e_p_bar, param, I_app))
    plt.plot(t * param.tau_d_star,
             heat.rev_p_0(T0, c_p_surf, param, I_app) * scale
             + param.delta * scale
             * heat.rev_p_1(T1, c_p_surf, param, I_app))
    plt.plot(t * param.tau_d_star,
             heat.rxn_p_0(T0, c_p_surf, param, I_app) * scale
             + heat.rev_p_0(T0, c_p_surf, param, I_app) * scale
             + param.delta * scale
             * heat.ohmic_s_1(c_e_neg_sep, c_e_pos_sep, param, I_app)
             + param.delta * scale
             * heat.rxn_p_1(T0, T1, c_p_surf, c_e_p_bar, param, I_app)
             + param.delta * scale
             * heat.rev_p_1(T1, c_p_surf, param, I_app))
    plt.plot(t_LION, Ohm_p, 'o', c='#1f77b4', label="Ohm")
    plt.plot(t_LION, Rxn_p, 'x', c='#ff7f0e', label="rxn")
    plt.plot(t_LION, Rev_p, '^', c='#2ca02c', label="rev")
    plt.plot(t_LION, Q_p, 's', c='#d62728', label="Total")
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.title('Positive electrode', fontsize=11)
    plt.legend()

    plt.subplot(1, 3, 2)
    plt.plot(t * param.tau_d_star,
             param.delta * scale
             * heat.ohmic_s_1(c_e_neg_sep, c_e_pos_sep, param, I_app))
    plt.plot(t_LION, Ohm_s, 'o', c='#1f77b4')
    plt.xlabel(r'$t$ [s]', fontsize=11)
    plt.title('Separator', fontsize=11)

    fig.tight_layout()