예제 #1
0
def main():

    #calib = calibration.calibration(visualtion=True)
    base_dataset_path = os.path.join(os.getcwd(), "datasets", "test_lab6")
    file_name = os.path.join(base_dataset_path, "imageData.txt")
    image_directory = base_dataset_path
    drone_location = os.path.join(base_dataset_path, "drone_postion.txt")
    write_img_dir_path = os.path.join(base_dataset_path, "results")

    all_images, data_matrix = util.importData(file_name, drone_location,
                                              image_directory)
    all_images = all_images[:12]
    data_matrix = data_matrix[:12]
    # for i in range(0,3):
    #     all_images[i] = all_images[i][::10, ::10, :]
    #all_imgs_undistorted = calib.calibrate(all_images)
    # stitcher = cv2.createStitcher() if imutils.is_cv3() else cv2.Stitcher_create()
    # (status, stitched) = stitcher.stitch(all_images)
    my_combiner = Combiner.Combiner(all_images, data_matrix)
    result = my_combiner.createMosaic()
    util.display("RESULT", result)
    if not os.path.exists(write_img_dir_path):
        os.makedirs(write_img_dir_path)
    cv2.imwrite(os.path.join(write_img_dir_path, "finalResult3.png"), result)
예제 #2
0
if os.path.isdir('results') == True:
    os.rename('results', 'results - ' + str(now))

os.mkdir('results')

fileName = "datasets/imageData.txt"
imageDirectory = "datasets/images/"

print("Creating Temp Directory")

if os.path.isdir('temp') == True:
    shutil.rmtree('temp', ignore_errors=False, onerror=None)

os.mkdir('temp')

print("Copying Images to Temp Directory")

allImages, dataMatrix = util.importData(fileName, imageDirectory)
# Perspective.changePerspective(allImages, dataMatrix)

print("Sitiching Images")
start = time.time()
result = Combiner.combine()
end = time.time()

util.display("RESULT", result, 4000000)
cv2.imwrite("results/final_result.jpg", result)
print("Time --->>>>>", end - start)
print("Done. Find your final image in results folder as final_result.jpg")
예제 #3
0
imgcols = 23
num_classes = 2
epochs = 500
batch_size = 64
ismodelsaved = True
undersampling = False
flpath = '/data/'
#
print('\n\n')
print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
print('!!!       PREDICTIONS ON CRISPOR             !!!')
print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
#
print('\n!!! DATA PIPELINE !!!\n')
loaddata = utilities.importData(flpath=flpath,
                                encoding=str(imgrows) + 'x' + str(imgcols),
                                sim='crispor',
                                tl=False)
x_train, x_test, y_train, y_test = train_test_split(
    loaddata.images,
    pd.Series(loaddata.target),  #loaddata.target,
    test_size=0.3,
    shuffle=True,
    random_state=42)
xtraincnn, xtestcnn, ytraincnn, ytestcnn, inputshapecnn = cnns.transformImages(
    x_train, x_test, y_train, y_test, imgrows, imgcols, num_classes)
xtrainffn, xtestffn, ytrainfnn, ytestffn, inputshapeffn = ffns.transformImages(
    x_train, x_test, y_train, y_test, imgrows, imgcols, num_classes)
xtrainrf, xtestrf, ytrainrf, ytestrf = mltrees.transformImages(
    x_train, x_test, y_train, y_test, imgrows, imgcols)
#
print('\n!!! TRAINING PIPELINE !!!\n')
예제 #4
0
'''
Driver script. Execute this to perform the mosaic procedure.
'''

import utilities as util
import Combiner
import cv2

fileName = "datasets/imageData.txt"
imageDirectory = "datasets/images/"
allImages, dataMatrix = util.importData(fileName, imageDirectory)
myCombiner = Combiner.Combiner(allImages, dataMatrix)
result = myCombiner.createMosaic()
util.display("RESULT", result)
cv2.imwrite("results/finalResult.png", result)