예제 #1
0
def op_analysis(circ, x0=None, guess=True, outfile=None, verbose=3):
    """Runs an Operating Point (OP) analysis
    circ: the circuit instance on which the simulation is run
    x0: is the initial guess to be used to start the NR mdn_solver
    guess: if set to True and x0 is None, it will generate a 'smart' guess
    verbose: verbosity level from 0 (silent) to 6 (debug).

    Returns a Operation Point result, if successful, None otherwise.
    """
    if outfile == 'stdout':
        verbose = 0  # silent mode, print out results only.
    if not options.dc_use_guess:
        guess = False

    (mna, N) = generate_mna_and_N(circ, verbose=verbose)

    printing.print_info_line(("MNA matrix and constant term (complete):", 4),
                             verbose)
    printing.print_info_line((str(mna), 4), verbose)
    printing.print_info_line((str(N), 4), verbose)

    # lets trash the unneeded col & row
    printing.print_info_line(("Removing unneeded row and column...", 4),
                             verbose)
    mna = utilities.remove_row_and_col(mna)
    N = utilities.remove_row(N, rrow=0)

    printing.print_info_line(("Starting op analysis:", 2), verbose)

    if x0 is None and guess:
        x0 = dc_guess.get_dc_guess(circ, verbose=verbose)
    # if x0 is not None, use that

    printing.print_info_line(("Solving with Gmin:", 4), verbose)
    Gmin_matrix = build_gmin_matrix(circ, options.gmin, mna.shape[0],
                                    verbose - 2)
    (x1, error1, solved1, n_iter1) = dc_solve(mna,
                                              N,
                                              circ,
                                              Gmin=Gmin_matrix,
                                              x0=x0,
                                              verbose=verbose)

    # We'll check the results now. Recalculate them without Gmin (using previsious solution as initial guess)
    # and check that differences on nodes and current do not exceed the
    # tolerances.
    if solved1:
        op1 = results.op_solution(x1,
                                  error1,
                                  circ,
                                  outfile=outfile,
                                  iterations=n_iter1)
        printing.print_info_line(("Solving without Gmin:", 4), verbose)
        (x2, error2, solved2, n_iter2) = dc_solve(mna,
                                                  N,
                                                  circ,
                                                  Gmin=None,
                                                  x0=x1,
                                                  verbose=verbose)
    else:
        solved2 = False

    if solved1 and not solved2:
        printing.print_general_error("Can't solve without Gmin.")
        if verbose:
            print "Displaying latest valid results."
            op1.write_to_file(filename='stdout')
        opsolution = op1
    elif solved1 and solved2:
        op2 = results.op_solution(x2,
                                  error2,
                                  circ,
                                  outfile=outfile,
                                  iterations=n_iter1 + n_iter2)
        op2.gmin = 0
        badvars = results.op_solution.gmin_check(op2, op1)
        printing.print_result_check(badvars, verbose=verbose)
        check_ok = not (len(badvars) > 0)
        if not check_ok and verbose:
            print "Solution with Gmin:"
            op1.write_to_file(filename='stdout')
            print "Solution without Gmin:"
            op2.write_to_file(filename='stdout')
        opsolution = op2
    else:  # not solved1
        printing.print_general_error("Couldn't solve the circuit. Giving up.")
        opsolution = None

    if opsolution and outfile != 'stdout' and outfile is not None:
        opsolution.write_to_file()
    if opsolution and verbose > 2 and options.cli:
        opsolution.write_to_file(filename='stdout')

    return opsolution
예제 #2
0
파일: transient.py 프로젝트: vovkd/ahkab
def transient_analysis(circ, tstart, tstep, tstop, method=TRAP, x0=None, mna=None, N=None, \
	D=None, data_filename="stdout", use_step_control=True, return_req_dict=None, verbose=3):
	"""Performs a transient analysis of the circuit described by circ.
	
	Important parameters:
	- tstep is the maximum step to be allowed during simulation.
	- print_step_and_lte is a boolean value. Is set to true, the step and the LTE of the first
	element of x will be printed out to step_and_lte.graph in the current directory.
	
	"""
	if data_filename == "stdout":
		verbose = 0
	_debug = False
	if _debug:
		print_step_and_lte = True
	else:
		print_step_and_lte = False
	
	HMAX = tstep
	
	#check parameters
	if tstart > tstop:
		printing.print_general_error("tstart > tstop")
		sys.exit(1)
	if tstep < 0:
		printing.print_general_error("tstep < 0")
		sys.exit(1)

	if verbose > 4:
		tmpstr = "Vea = %g Ver = %g Iea = %g Ier = %g max_time_iter = %g HMIN = %g" % \
		(options.vea, options.ver, options.iea, options.ier, options.transient_max_time_iter, options.hmin)
		printing.print_info_line((tmpstr, 5), verbose)
	
	locked_nodes = circ.get_locked_nodes()
	
	if print_step_and_lte:
		flte = open("step_and_lte.graph", "w")
		flte.write("#T\tStep\tLTE\n")
	
	printing.print_info_line(("Starting transient analysis: ", 3), verbose)
	printing.print_info_line(("Selected method: %s" % (method,), 3), verbose)
	#It's a good idea to call transient with prebuilt MNA and N matrix
	#the analysis will be slightly faster (long netlists). 
	if mna is None or N is None:
		(mna, N) = dc_analysis.generate_mna_and_N(circ)
		mna = utilities.remove_row_and_col(mna)
		N = utilities.remove_row(N, rrow=0)
	elif not mna.shape[0] == N.shape[0]:
		printing.print_general_error("mna matrix and N vector have different number of columns.")
		sys.exit(0)
	if D is None:
		# if you do more than one tran analysis, output streams should be changed...
		# this needs to be fixed
		D = generate_D(circ, [mna.shape[0], mna.shape[0]])
		D = utilities.remove_row_and_col(D)

	# setup x0
	if x0 is None:
		printing.print_info_line(("Generating x(t=%g) = 0" % (tstart,), 5), verbose)
		x0 = numpy.matrix(numpy.zeros((mna.shape[0], 1)))
		opsol =  results.op_solution(x=x0, error=x0, circ=circ, outfile=None)
	else:
		if isinstance(x0, results.op_solution):
			opsol = x0
			x0 = x0.asmatrix()
		else:
			opsol =  results.op_solution(x=x0, error=numpy.matrix(numpy.zeros((mna.shape[0], 1))), circ=circ, outfile=None)
		printing.print_info_line(("Using the supplied op as x(t=%g)." % (tstart,), 5), verbose)
		
	if verbose > 4:
		print "x0:"
		opsol.print_short()
	
	# setup the df method
	printing.print_info_line(("Selecting the appropriate DF ("+method+")... ", 5), verbose, print_nl=False)
	if method == IMPLICIT_EULER:
		import implicit_euler as df
	elif method == TRAP:
		import trap as df
	elif method == GEAR1:
		import gear as df
		df.order = 1
	elif method == GEAR2:
		import gear as df
		df.order = 2
	elif method == GEAR3:
		import gear as df
		df.order = 3
	elif method == GEAR4:
		import gear as df
		df.order = 4
	elif method == GEAR5:
		import gear as df
		df.order = 5
	elif method == GEAR6:
		import gear as df
		df.order = 6
	else:
		df = import_custom_df_module(method, print_out=(data_filename != "stdout"))
		# df is none if module is not found
	
	if df is None:
		sys.exit(23)
		
	if not df.has_ff() and use_step_control:
		printing.print_warning("The chosen DF does not support step control. Turning off the feature.")
		use_step_control = False
		#use_aposteriori_step_control = False

	printing.print_info_line(("done.", 5), verbose)
		
	# setup the data buffer
	# if you use the step control, the buffer has to be one point longer.
	# That's because the excess point is used by a FF in the df module to predict the next value.
	printing.print_info_line(("Setting up the buffer... ", 5), verbose, print_nl=False)
	((max_x, max_dx), (pmax_x, pmax_dx)) = df.get_required_values()
	if max_x is None and max_dx is None:
		printing.print_general_error("df doesn't need any value?")
		sys.exit(1)
	if use_step_control:
		thebuffer = dfbuffer(length=max(max_x, max_dx, pmax_x, pmax_dx) + 1, width=3)
	else:
		thebuffer = dfbuffer(length=max(max_x, max_dx) + 1, width=3)
	thebuffer.add((tstart, x0, None)) #setup the first values
	printing.print_info_line(("done.", 5), verbose) #FIXME
	
	#setup the output buffer
	if return_req_dict:
		output_buffer = dfbuffer(length=return_req_dict["points"], width=1)
		output_buffer.add((x0,))
	else:
		output_buffer = None
	
	# import implicit_euler to be used in the first iterations
	# this is because we don't have any dx when we start, nor any past point value
	if (max_x is not None and max_x > 0) or max_dx is not None:
		import implicit_euler
	
	printing.print_info_line(("MNA (reduced):", 5), verbose)
	printing.print_info_line((str(mna), 5), verbose)
	printing.print_info_line(("D (reduced):", 5), verbose)
	printing.print_info_line((str(D), 5), verbose)
	
	# setup the initial values to start the iteration:
	x = None
	time = tstart
	nv = len(circ.nodes_dict)

	Gmin_matrix = dc_analysis.build_gmin_matrix(circ, options.gmin, mna.shape[0], verbose)

	# lo step viene generato automaticamente, ma non superare mai quello fornito.
	if use_step_control:
		#tstep = min((tstop-tstart)/9999.0, HMAX, 100.0 * options.hmin)
		tstep = min((tstop-tstart)/9999.0, HMAX)
	printing.print_info_line(("Initial step: %g"% (tstep,), 5), verbose)

	if max_dx is None:
		max_dx_plus_1 = None
	else:
		max_dx_plus_1 = max_dx +1
	if pmax_dx is None:
		pmax_dx_plus_1 = None
	else:
		pmax_dx_plus_1 = pmax_dx +1
	
	# setup error vectors
	aerror = numpy.mat(numpy.zeros((x0.shape[0], 1)))
	aerror[:nv-1, 0] = options.vea
	aerror[nv-1:, 0] = options.vea
	rerror = numpy.mat(numpy.zeros((x0.shape[0], 1)))
	rerror[:nv-1, 0] = options.ver
	rerror[nv-1:, 0] = options.ier
	
	iter_n = 0  # contatore d'iterazione
	lte = None
	sol = results.tran_solution(circ, tstart, tstop, op=x0, method=method, outfile=data_filename)
	printing.print_info_line(("Solving... ", 3), verbose, print_nl=False)
	tick = ticker.ticker(increments_for_step=1)
	tick.display(verbose > 1)
	while time < tstop:
		if iter_n < max(max_x, max_dx_plus_1):
			x_coeff, const, x_lte_coeff, prediction, pred_lte_coeff = \
			implicit_euler.get_df((thebuffer.get_df_vector()[0],), tstep, \
			predict=(use_step_control and (iter_n >= max(pmax_x, pmax_dx_plus_1))))
			
		else:
			[x_coeff, const, x_lte_coeff, prediction, pred_lte_coeff] = \
			df.get_df(thebuffer.get_df_vector(), tstep, predict=use_step_control)
		
		if options.transient_prediction_as_x0 and use_step_control and prediction is not None:
			x0 = prediction
		elif x is not None:
			x0 = x
		
		(x1, error, solved, n_iter) = dc_analysis.dc_solve(mna=(mna + numpy.multiply(x_coeff, D)) , Ndc=N,  Ntran=D*const, circ=circ, Gmin=Gmin_matrix, x0=x0, time=(time + tstep), locked_nodes=locked_nodes, MAXIT=options.transient_max_nr_iter, verbose=0)
		
		if solved:
			old_step = tstep #we will modify it, if we're using step control otherwise it's the same
			# step control (yeah)
			if use_step_control:
				if x_lte_coeff is not None and pred_lte_coeff is not None and prediction is not None:
					# this is the Local Truncation Error :)
					lte = abs((x_lte_coeff / (pred_lte_coeff - x_lte_coeff)) * (prediction - x1))
					# it should NEVER happen that new_step > 2*tstep, for stability
					new_step_coeff = 2 
					for index in xrange(x.shape[0]):
						if lte[index, 0] != 0:
							new_value = ((aerror[index, 0] + rerror[index, 0]*abs(x[index, 0])) / lte[index, 0]) \
							** (1.0 / (df.order+1))
							if new_value < new_step_coeff:
								new_step_coeff = new_value
							#print new_value
					new_step = tstep * new_step_coeff
					if options.transient_use_aposteriori_step_control and new_step < options.transient_aposteriori_step_threshold * tstep: 
						#don't recalculate a x for a small change
						tstep = check_step(new_step, time, tstop, HMAX)
						#print "Apost. (reducing) step = "+str(tstep)
						continue
					tstep = check_step(new_step, time, tstop, HMAX) # used in the next iteration
					#print "Apriori tstep = "+str(tstep)
				else:
					#print "LTE not calculated."
					lte = None
			if print_step_and_lte and lte is not None: 
				#if you wish to look at the step. We print just a lte
				flte.write(str(time)+"\t"+str(old_step)+"\t"+str(lte.max())+"\n")
			# if we get here, either aposteriori_step_control is 
			# disabled, or it's enabled and the error is small
			# enough. Anyway, the result is GOOD, STORE IT.
			time = time + old_step
			x = x1
			iter_n = iter_n + 1
			sol.add_line(time, x)
			
			dxdt = numpy.multiply(x_coeff, x) + const
			thebuffer.add((time, x, dxdt))
			if output_buffer is not None:
				output_buffer.add((x, ))
			tick.step(verbose > 1)
		else:
			# If we get here, Newton failed to converge. We need to reduce the step...
			if use_step_control:
				tstep = tstep/5.0
				tstep = check_step(tstep, time, tstop, HMAX)
				printing.print_info_line(("At %g s reducing step: %g s (convergence failed)" % (time, tstep), 5), verbose)
			else: #we can't reduce the step
				printing.print_general_error("Can't converge with step "+str(tstep)+".")
				printing.print_general_error("Try setting --t-max-nr to a higher value or set step to a lower one.")
				solved = False
				break
		if options.transient_max_time_iter and iter_n == options.transient_max_time_iter:
			printing.print_general_error("MAX_TIME_ITER exceeded ("+str(options.transient_max_time_iter)+"), iteration halted.")
			solved = False
			break
	
	if print_step_and_lte:
		flte.close()
	
	tick.hide(verbose > 1)
	
	if solved:
		printing.print_info_line(("done.", 3), verbose)
		printing.print_info_line(("Average time step: %g" % ((tstop - tstart)/iter_n,), 3), verbose)

		if output_buffer:
			ret_value = output_buffer.get_as_matrix()
		else:
			ret_value = sol
	else:
		print "failed."
		ret_value =  None
	
	return ret_value
예제 #3
0
def ac_analysis(circ, start, points, stop, sweep_type, x0=None,
                mna=None, AC=None, Nac=None, J=None,
                outfile="stdout", verbose=3):
    """Performs an AC analysis of the circuit described by circ.

    Parameters:
    start (float): the start angular frequency for the AC analysis
    stop (float): stop angular frequency
    points (float): the number of points to be use the discretize the
                    [start, stop] interval.
    sweep_type (string): Either 'LOG' or 'LINEAR', defaults to 'LOG'.
    outfile (string): the filename of the output file where the results will be written.
                      '.ac' is automatically added at the end to prevent different
                      analyses from overwriting each-other's results.
                      If unset or set to None, defaults to stdout.
    verbose (int): the verbosity level, from 0 (silent) to 6 (debug).

    Returns: an AC results object
        """

    if outfile == 'stdout':
        verbose = 0

    # check step/start/stop parameters
    nsteps = points - 1
    if start == 0:
        printing.print_general_error("AC analysis has start frequency = 0")
        sys.exit(5)
    if start > stop:
        printing.print_general_error("AC analysis has start > stop")
        sys.exit(1)
    if nsteps < 1:
        printing.print_general_error("AC analysis has number of steps <= 1")
        sys.exit(1)
    if sweep_type == options.ac_log_step:
        omega_iter = utilities.log_axis_iterator(stop, start, nsteps)
    elif sweep_type == options.ac_lin_step:
        omega_iter = utilities.lin_axis_iterator(stop, start, nsteps)
    else:
        printing.print_general_error("Unknown sweep type.")
        sys.exit(1)

    tmpstr = "Vea =", options.vea, "Ver =", options.ver, "Iea =", options.iea, "Ier =", \
        options.ier, "max_ac_nr_iter =", options.ac_max_nr_iter
    printing.print_info_line((tmpstr, 5), verbose)
    del tmpstr

    printing.print_info_line(("Starting AC analysis: ", 1), verbose)
    tmpstr = "w: start = %g Hz, stop = %g Hz, %d steps" % (start, stop, nsteps)
    printing.print_info_line((tmpstr, 3), verbose)
    del tmpstr

    # It's a good idea to call AC with prebuilt MNA matrix if the circuit is
    # big
    if mna is None:
        (mna, N) = dc_analysis.generate_mna_and_N(circ, verbose=verbose)
        del N
        mna = utilities.remove_row_and_col(mna)
    if Nac is None:
        Nac = generate_Nac(circ)
        Nac = utilities.remove_row(Nac, rrow=0)
    if AC is None:
        AC = generate_AC(circ, [mna.shape[0], mna.shape[0]])
        AC = utilities.remove_row_and_col(AC)

    if circ.is_nonlinear():
        if J is not None:
            pass
            # we used the supplied linearization matrix
        else:
            if x0 is None:
                printing.print_info_line(
                    ("Starting OP analysis to get a linearization point...", 3), verbose, print_nl=False)
                # silent OP
                x0 = dc_analysis.op_analysis(circ, verbose=0)
                if x0 is None:  # still! Then op_analysis has failed!
                    printing.print_info_line(("failed.", 3), verbose)
                    printing.print_general_error(
                        "OP analysis failed, no linearization point available. Quitting.")
                    sys.exit(3)
                else:
                    printing.print_info_line(("done.", 3), verbose)
            printing.print_info_line(
                ("Linearization point (xop):", 5), verbose)
            if verbose > 4:
                x0.print_short()
            printing.print_info_line(
                ("Linearizing the circuit...", 5), verbose, print_nl=False)
            J = generate_J(xop=x0.asmatrix(), circ=circ, mna=mna,
                           Nac=Nac, data_filename=outfile, verbose=verbose)
            printing.print_info_line((" done.", 5), verbose)
            # we have J, continue
    else:  # not circ.is_nonlinear()
        # no J matrix is required.
        J = 0

    printing.print_info_line(("MNA (reduced):", 5), verbose)
    printing.print_info_line((str(mna), 5), verbose)
    printing.print_info_line(("AC (reduced):", 5), verbose)
    printing.print_info_line((str(AC), 5), verbose)
    printing.print_info_line(("J (reduced):", 5), verbose)
    printing.print_info_line((str(J), 5), verbose)
    printing.print_info_line(("Nac (reduced):", 5), verbose)
    printing.print_info_line((str(Nac), 5), verbose)

    sol = results.ac_solution(circ, ostart=start, ostop=stop,
                              opoints=nsteps, stype=sweep_type, op=x0, outfile=outfile)

    # setup the initial values to start the iteration:
    nv = len(circ.nodes_dict)
    j = numpy.complex('j')

    Gmin_matrix = dc_analysis.build_gmin_matrix(
        circ, options.gmin, mna.shape[0], verbose)

    iter_n = 0  # contatore d'iterazione
    printing.print_info_line(("Solving... ", 3), verbose, print_nl=False)
    tick = ticker.ticker(increments_for_step=1)
    tick.display(verbose > 1)

    x = x0
    for omega in omega_iter:
        (x, error, solved, n_iter) = dc_analysis.dc_solve(
            mna=(mna + numpy.multiply(j * omega, AC) + J),
            Ndc = Nac,
            Ntran = 0,
            circ = circuit.Circuit(
                title="Dummy circuit for AC", filename=None),
            Gmin = Gmin_matrix,
            x0 = x,
            time = None,
            locked_nodes = None,
            MAXIT = options.ac_max_nr_iter,
            skip_Tt = True,
            verbose = 0)
        if solved:
            tick.step(verbose > 1)
            iter_n = iter_n + 1
            # hooray!
            sol.add_line(omega, x)
        else:
            break

    tick.hide(verbose > 1)

    if solved:
        printing.print_info_line(("done.", 1), verbose)
        ret_value = sol
    else:
        printing.print_info_line(("failed.", 1), verbose)
        ret_value = None

    return ret_value
예제 #4
0
def ac_analysis(circ, start, nsteps, stop, step_type, xop=None, mna=None,\
 AC=None, Nac=None, J=None, data_filename="stdout", verbose=3):
    """Performs an AC analysis of the circuit (described by circ).
	"""

    if data_filename == 'stdout':
        verbose = 0

    #check step/start/stop parameters
    if start == 0:
        printing.print_general_error("AC analysis has start frequency = 0")
        sys.exit(5)
    if start > stop:
        printing.print_general_error("AC analysis has start > stop")
        sys.exit(1)
    if nsteps < 1:
        printing.print_general_error("AC analysis has number of steps <= 1")
        sys.exit(1)
    if step_type == options.ac_log_step:
        omega_iter = utilities.log_axis_iterator(stop, start, nsteps)
    elif step_type == options.ac_lin_step:
        omega_iter = utilities.lin_axis_iterator(stop, start, nsteps)
    else:
        printing.print_general_error("Unknown sweep type.")
        sys.exit(1)

    tmpstr = "Vea =", options.vea, "Ver =", options.ver, "Iea =", options.iea, "Ier =", \
    options.ier, "max_ac_nr_iter =", options.ac_max_nr_iter
    printing.print_info_line((tmpstr, 5), verbose)
    del tmpstr

    printing.print_info_line(("Starting AC analysis: ", 1), verbose)
    tmpstr = "w: start = %g Hz, stop = %g Hz, %d steps" % (start, stop, nsteps)
    printing.print_info_line((tmpstr, 3), verbose)
    del tmpstr

    #It's a good idea to call AC with prebuilt MNA matrix if the circuit is big
    if mna is None:
        (mna, N) = dc_analysis.generate_mna_and_N(circ)
        del N
        mna = utilities.remove_row_and_col(mna)
    if Nac is None:
        Nac = generate_Nac(circ)
        Nac = utilities.remove_row(Nac, rrow=0)
    if AC is None:
        AC = generate_AC(circ, [mna.shape[0], mna.shape[0]])
        AC = utilities.remove_row_and_col(AC)

    if circ.is_nonlinear():
        if J is not None:
            pass
            # we used the supplied linearization matrix
        else:
            if xop is None:
                printing.print_info_line(
                    ("Starting OP analysis to get a linearization point...",
                     3),
                    verbose,
                    print_nl=False)
                #silent OP
                xop = dc_analysis.op_analysis(circ, verbose=0)
                if xop is None:  #still! Then op_analysis has failed!
                    printing.print_info_line(("failed.", 3), verbose)
                    printing.print_general_error(
                        "OP analysis failed, no linearization point available. Quitting."
                    )
                    sys.exit(3)
                else:
                    printing.print_info_line(("done.", 3), verbose)
            printing.print_info_line(("Linearization point (xop):", 5),
                                     verbose)
            if verbose > 4: xop.print_short()
            printing.print_info_line(("Linearizing the circuit...", 5),
                                     verbose,
                                     print_nl=False)
            J = generate_J(xop=xop.asmatrix(),
                           circ=circ,
                           mna=mna,
                           Nac=Nac,
                           data_filename=data_filename,
                           verbose=verbose)
            printing.print_info_line((" done.", 5), verbose)
            # we have J, continue
    else:  #not circ.is_nonlinear()
        # no J matrix is required.
        J = 0

    printing.print_info_line(("MNA (reduced):", 5), verbose)
    printing.print_info_line((str(mna), 5), verbose)
    printing.print_info_line(("AC (reduced):", 5), verbose)
    printing.print_info_line((str(AC), 5), verbose)
    printing.print_info_line(("J (reduced):", 5), verbose)
    printing.print_info_line((str(J), 5), verbose)
    printing.print_info_line(("Nac (reduced):", 5), verbose)
    printing.print_info_line((str(Nac), 5), verbose)

    sol = results.ac_solution(circ,
                              ostart=start,
                              ostop=stop,
                              opoints=nsteps,
                              stype=step_type,
                              op=xop,
                              outfile=data_filename)

    # setup the initial values to start the iteration:
    nv = len(circ.nodes_dict)
    j = numpy.complex('j')

    Gmin_matrix = dc_analysis.build_gmin_matrix(circ, options.gmin,
                                                mna.shape[0], verbose)

    iter_n = 0  # contatore d'iterazione
    #printing.print_results_header(circ, fdata, print_int_nodes=options.print_int_nodes, print_omega=True)
    printing.print_info_line(("Solving... ", 3), verbose, print_nl=False)
    tick = ticker.ticker(increments_for_step=1)
    tick.display(verbose > 1)

    x = xop
    for omega in omega_iter:
        (x, error, solved, n_iter) = dc_analysis.dc_solve(mna=(mna + numpy.multiply(j*omega, AC) + J), \
        Ndc=Nac,  Ntran=0, circ=circuit.circuit(title="Dummy circuit for AC", filename=None), Gmin=Gmin_matrix, x0=x, \
        time=None, locked_nodes=None, MAXIT=options.ac_max_nr_iter, skip_Tt=True, verbose=0)
        if solved:
            tick.step(verbose > 1)
            iter_n = iter_n + 1
            # hooray!
            sol.add_line(omega, x)
        else:
            break

    tick.hide(verbose > 1)

    if solved:
        printing.print_info_line(("done.", 1), verbose)
        ret_value = sol
    else:
        printing.print_info_line(("failed.", 1), verbose)
        ret_value = None

    return ret_value
예제 #5
0
파일: transient.py 프로젝트: vovkd/ahkab
def transient_analysis(circ, tstart, tstep, tstop, method=TRAP, x0=None, mna=None, N=None, \
 D=None, data_filename="stdout", use_step_control=True, return_req_dict=None, verbose=3):
    """Performs a transient analysis of the circuit described by circ.
	
	Important parameters:
	- tstep is the maximum step to be allowed during simulation.
	- print_step_and_lte is a boolean value. Is set to true, the step and the LTE of the first
	element of x will be printed out to step_and_lte.graph in the current directory.
	
	"""
    if data_filename == "stdout":
        verbose = 0
    _debug = False
    if _debug:
        print_step_and_lte = True
    else:
        print_step_and_lte = False

    HMAX = tstep

    #check parameters
    if tstart > tstop:
        printing.print_general_error("tstart > tstop")
        sys.exit(1)
    if tstep < 0:
        printing.print_general_error("tstep < 0")
        sys.exit(1)

    if verbose > 4:
        tmpstr = "Vea = %g Ver = %g Iea = %g Ier = %g max_time_iter = %g HMIN = %g" % \
        (options.vea, options.ver, options.iea, options.ier, options.transient_max_time_iter, options.hmin)
        printing.print_info_line((tmpstr, 5), verbose)

    locked_nodes = circ.get_locked_nodes()

    if print_step_and_lte:
        flte = open("step_and_lte.graph", "w")
        flte.write("#T\tStep\tLTE\n")

    printing.print_info_line(("Starting transient analysis: ", 3), verbose)
    printing.print_info_line(("Selected method: %s" % (method, ), 3), verbose)
    #It's a good idea to call transient with prebuilt MNA and N matrix
    #the analysis will be slightly faster (long netlists).
    if mna is None or N is None:
        (mna, N) = dc_analysis.generate_mna_and_N(circ)
        mna = utilities.remove_row_and_col(mna)
        N = utilities.remove_row(N, rrow=0)
    elif not mna.shape[0] == N.shape[0]:
        printing.print_general_error(
            "mna matrix and N vector have different number of columns.")
        sys.exit(0)
    if D is None:
        # if you do more than one tran analysis, output streams should be changed...
        # this needs to be fixed
        D = generate_D(circ, [mna.shape[0], mna.shape[0]])
        D = utilities.remove_row_and_col(D)

    # setup x0
    if x0 is None:
        printing.print_info_line(("Generating x(t=%g) = 0" % (tstart, ), 5),
                                 verbose)
        x0 = numpy.matrix(numpy.zeros((mna.shape[0], 1)))
        opsol = results.op_solution(x=x0, error=x0, circ=circ, outfile=None)
    else:
        if isinstance(x0, results.op_solution):
            opsol = x0
            x0 = x0.asmatrix()
        else:
            opsol = results.op_solution(x=x0,
                                        error=numpy.matrix(
                                            numpy.zeros((mna.shape[0], 1))),
                                        circ=circ,
                                        outfile=None)
        printing.print_info_line(
            ("Using the supplied op as x(t=%g)." % (tstart, ), 5), verbose)

    if verbose > 4:
        print "x0:"
        opsol.print_short()

    # setup the df method
    printing.print_info_line(
        ("Selecting the appropriate DF (" + method + ")... ", 5),
        verbose,
        print_nl=False)
    if method == IMPLICIT_EULER:
        import implicit_euler as df
    elif method == TRAP:
        import trap as df
    elif method == GEAR1:
        import gear as df
        df.order = 1
    elif method == GEAR2:
        import gear as df
        df.order = 2
    elif method == GEAR3:
        import gear as df
        df.order = 3
    elif method == GEAR4:
        import gear as df
        df.order = 4
    elif method == GEAR5:
        import gear as df
        df.order = 5
    elif method == GEAR6:
        import gear as df
        df.order = 6
    else:
        df = import_custom_df_module(method,
                                     print_out=(data_filename != "stdout"))
        # df is none if module is not found

    if df is None:
        sys.exit(23)

    if not df.has_ff() and use_step_control:
        printing.print_warning(
            "The chosen DF does not support step control. Turning off the feature."
        )
        use_step_control = False
        #use_aposteriori_step_control = False

    printing.print_info_line(("done.", 5), verbose)

    # setup the data buffer
    # if you use the step control, the buffer has to be one point longer.
    # That's because the excess point is used by a FF in the df module to predict the next value.
    printing.print_info_line(("Setting up the buffer... ", 5),
                             verbose,
                             print_nl=False)
    ((max_x, max_dx), (pmax_x, pmax_dx)) = df.get_required_values()
    if max_x is None and max_dx is None:
        printing.print_general_error("df doesn't need any value?")
        sys.exit(1)
    if use_step_control:
        thebuffer = dfbuffer(length=max(max_x, max_dx, pmax_x, pmax_dx) + 1,
                             width=3)
    else:
        thebuffer = dfbuffer(length=max(max_x, max_dx) + 1, width=3)
    thebuffer.add((tstart, x0, None))  #setup the first values
    printing.print_info_line(("done.", 5), verbose)  #FIXME

    #setup the output buffer
    if return_req_dict:
        output_buffer = dfbuffer(length=return_req_dict["points"], width=1)
        output_buffer.add((x0, ))
    else:
        output_buffer = None

    # import implicit_euler to be used in the first iterations
    # this is because we don't have any dx when we start, nor any past point value
    if (max_x is not None and max_x > 0) or max_dx is not None:
        import implicit_euler

    printing.print_info_line(("MNA (reduced):", 5), verbose)
    printing.print_info_line((str(mna), 5), verbose)
    printing.print_info_line(("D (reduced):", 5), verbose)
    printing.print_info_line((str(D), 5), verbose)

    # setup the initial values to start the iteration:
    x = None
    time = tstart
    nv = len(circ.nodes_dict)

    Gmin_matrix = dc_analysis.build_gmin_matrix(circ, options.gmin,
                                                mna.shape[0], verbose)

    # lo step viene generato automaticamente, ma non superare mai quello fornito.
    if use_step_control:
        #tstep = min((tstop-tstart)/9999.0, HMAX, 100.0 * options.hmin)
        tstep = min((tstop - tstart) / 9999.0, HMAX)
    printing.print_info_line(("Initial step: %g" % (tstep, ), 5), verbose)

    if max_dx is None:
        max_dx_plus_1 = None
    else:
        max_dx_plus_1 = max_dx + 1
    if pmax_dx is None:
        pmax_dx_plus_1 = None
    else:
        pmax_dx_plus_1 = pmax_dx + 1

    # setup error vectors
    aerror = numpy.mat(numpy.zeros((x0.shape[0], 1)))
    aerror[:nv - 1, 0] = options.vea
    aerror[nv - 1:, 0] = options.vea
    rerror = numpy.mat(numpy.zeros((x0.shape[0], 1)))
    rerror[:nv - 1, 0] = options.ver
    rerror[nv - 1:, 0] = options.ier

    iter_n = 0  # contatore d'iterazione
    lte = None
    sol = results.tran_solution(circ,
                                tstart,
                                tstop,
                                op=x0,
                                method=method,
                                outfile=data_filename)
    printing.print_info_line(("Solving... ", 3), verbose, print_nl=False)
    tick = ticker.ticker(increments_for_step=1)
    tick.display(verbose > 1)
    while time < tstop:
        if iter_n < max(max_x, max_dx_plus_1):
            x_coeff, const, x_lte_coeff, prediction, pred_lte_coeff = \
            implicit_euler.get_df((thebuffer.get_df_vector()[0],), tstep, \
            predict=(use_step_control and (iter_n >= max(pmax_x, pmax_dx_plus_1))))

        else:
            [x_coeff, const, x_lte_coeff, prediction, pred_lte_coeff] = \
            df.get_df(thebuffer.get_df_vector(), tstep, predict=use_step_control)

        if options.transient_prediction_as_x0 and use_step_control and prediction is not None:
            x0 = prediction
        elif x is not None:
            x0 = x

        (x1, error, solved,
         n_iter) = dc_analysis.dc_solve(mna=(mna + numpy.multiply(x_coeff, D)),
                                        Ndc=N,
                                        Ntran=D * const,
                                        circ=circ,
                                        Gmin=Gmin_matrix,
                                        x0=x0,
                                        time=(time + tstep),
                                        locked_nodes=locked_nodes,
                                        MAXIT=options.transient_max_nr_iter,
                                        verbose=0)

        if solved:
            old_step = tstep  #we will modify it, if we're using step control otherwise it's the same
            # step control (yeah)
            if use_step_control:
                if x_lte_coeff is not None and pred_lte_coeff is not None and prediction is not None:
                    # this is the Local Truncation Error :)
                    lte = abs((x_lte_coeff / (pred_lte_coeff - x_lte_coeff)) *
                              (prediction - x1))
                    # it should NEVER happen that new_step > 2*tstep, for stability
                    new_step_coeff = 2
                    for index in xrange(x.shape[0]):
                        if lte[index, 0] != 0:
                            new_value = ((aerror[index, 0] + rerror[index, 0]*abs(x[index, 0])) / lte[index, 0]) \
                            ** (1.0 / (df.order+1))
                            if new_value < new_step_coeff:
                                new_step_coeff = new_value
                            #print new_value
                    new_step = tstep * new_step_coeff
                    if options.transient_use_aposteriori_step_control and new_step < options.transient_aposteriori_step_threshold * tstep:
                        #don't recalculate a x for a small change
                        tstep = check_step(new_step, time, tstop, HMAX)
                        #print "Apost. (reducing) step = "+str(tstep)
                        continue
                    tstep = check_step(new_step, time, tstop,
                                       HMAX)  # used in the next iteration
                    #print "Apriori tstep = "+str(tstep)
                else:
                    #print "LTE not calculated."
                    lte = None
            if print_step_and_lte and lte is not None:
                #if you wish to look at the step. We print just a lte
                flte.write(
                    str(time) + "\t" + str(old_step) + "\t" + str(lte.max()) +
                    "\n")
            # if we get here, either aposteriori_step_control is
            # disabled, or it's enabled and the error is small
            # enough. Anyway, the result is GOOD, STORE IT.
            time = time + old_step
            x = x1
            iter_n = iter_n + 1
            sol.add_line(time, x)

            dxdt = numpy.multiply(x_coeff, x) + const
            thebuffer.add((time, x, dxdt))
            if output_buffer is not None:
                output_buffer.add((x, ))
            tick.step(verbose > 1)
        else:
            # If we get here, Newton failed to converge. We need to reduce the step...
            if use_step_control:
                tstep = tstep / 5.0
                tstep = check_step(tstep, time, tstop, HMAX)
                printing.print_info_line(
                    ("At %g s reducing step: %g s (convergence failed)" %
                     (time, tstep), 5), verbose)
            else:  #we can't reduce the step
                printing.print_general_error("Can't converge with step " +
                                             str(tstep) + ".")
                printing.print_general_error(
                    "Try setting --t-max-nr to a higher value or set step to a lower one."
                )
                solved = False
                break
        if options.transient_max_time_iter and iter_n == options.transient_max_time_iter:
            printing.print_general_error("MAX_TIME_ITER exceeded (" +
                                         str(options.transient_max_time_iter) +
                                         "), iteration halted.")
            solved = False
            break

    if print_step_and_lte:
        flte.close()

    tick.hide(verbose > 1)

    if solved:
        printing.print_info_line(("done.", 3), verbose)
        printing.print_info_line(
            ("Average time step: %g" % ((tstop - tstart) / iter_n, ), 3),
            verbose)

        if output_buffer:
            ret_value = output_buffer.get_as_matrix()
        else:
            ret_value = sol
    else:
        print "failed."
        ret_value = None

    return ret_value
예제 #6
0
파일: bfpss.py 프로젝트: vovkd/ahkab
def bfpss(circ, period, step=None, mna=None, Tf=None, D=None, points=None, autonomous=False, x0=None,  data_filename='stdout', vector_norm=lambda v: max(abs(v)), verbose=3):
	"""Performs a PSS analysis. 
	
	Time step is constant, IE will be used as DF
	
	Parameters:
	circ is the circuit description class
	period is the period of the solution
	mna, D, Tf are not compulsory they will be computed if they're set to None
	step is the time step between consecutive points
	points is the number of points to be used
	step and points are mutually exclusive options:
	- if step is specified, the number of points will be automatically determined 
	- if points is set, the step will be automatically determined
	- if none of them is set, options.shooting_default_points will be used as points
	autonomous has to be False, autonomous circuits are not supported
	x0 is the initial guess to be used. Needs work.
	data_filename is the output filename. Defaults to stdout.
	verbose is set to zero (print errors only) if datafilename == 'stdout'.

	Returns: nothing
	"""
	if data_filename == "stdout":
		verbose = 0
	
	printing.print_info_line(("Starting periodic steady state analysis:",3), verbose)
	printing.print_info_line(("Method: brute-force",3), verbose)
	
	if mna is None or Tf is None:
		(mna, Tf) = dc_analysis.generate_mna_and_N(circ)
		mna = utilities.remove_row_and_col(mna)
		Tf = utilities.remove_row(Tf, rrow=0)
	elif not mna.shape[0] == Tf.shape[0]:
		printing.print_general_error("mna matrix and N vector have different number of rows.")
		sys.exit(0)
	
	if D is None:
		D = transient.generate_D(circ, [mna.shape[0], mna.shape[0]])
		D = utilities.remove_row_and_col(D)
	elif not mna.shape == D.shape:
		printing.print_general_error("mna matrix and D matrix have different sizes.")
		sys.exit(0)
	
	(points, step) = check_step_and_points(step, points, period)
	
	n_of_var = mna.shape[0]
	locked_nodes = circ.get_locked_nodes()
	tick = ticker.ticker(increments_for_step=1)


	CMAT = build_CMAT(mna, D, step, points, tick, n_of_var=n_of_var, \
		verbose=verbose)

	x = build_x(mna, step, points, tick, x0=x0, n_of_var=n_of_var, \
		verbose=verbose)

	Tf = build_Tf(Tf, points, tick, n_of_var=n_of_var, verbose=verbose)
	
	# time variable component: Tt this is always the same in each iter. So we build it once for all
	# this holds all time-dependent sources (both V/I).
	Tt = build_Tt(circ, points, step, tick, n_of_var=n_of_var, verbose=verbose)

	# Indices to differentiate between currents and voltages in the convergence check
	nv_indices = []
	ni_indices = []
	nv_1 = len(circ.nodes_dict) - 1
	ni = n_of_var - nv_1
	for i in range(points):
		nv_indices += (i*mna.shape[0]*numpy.ones(nv_1) + numpy.arange(nv_1)).tolist()
		ni_indices += (i*mna.shape[0]*numpy.ones(ni) + numpy.arange(nv_1, n_of_var)).tolist()

	converged = False

	printing.print_info_line(("Solving... ",3), verbose, print_nl=False)
	tick.reset()
	tick.display(verbose > 2)
	J = numpy.mat(numpy.zeros(CMAT.shape))
	T = numpy.mat(numpy.zeros((CMAT.shape[0], 1)))
	# td is a numpy matrix that will hold the damping factors
	td = numpy.mat(numpy.zeros((points, 1)))
	iteration = 0 # newton iteration counter
	
	while True:
		if iteration: # the first time are already all zeros
			J[:, :] = 0
			T[:, 0] = 0
			td[:, 0] = 0
		for index in xrange(1, points):
			for elem in circ.elements:
				# build all dT(xn)/dxn (stored in J) and T(x)
				if elem.is_nonlinear:
					oports = elem.get_output_ports()
					for opindex in range(len(oports)):
						dports = elem.get_drive_ports(opindex)
						v_ports = []
						for dpindex in range(len(dports)):
							dn1, dn2 = dports[dpindex]
							v = 0 # build v: remember we trashed the 0 row and 0 col of mna -> -1
							if dn1:
								v = v + x[index*n_of_var + dn1 - 1, 0]
							if dn2:
								v = v - x[index*n_of_var + dn2 - 1, 0]
							v_ports.append(v)
						# all drive ports are ready.
						n1, n2 = oports[opindex][0], oports[opindex][1]
						if n1:
							T[index*n_of_var + n1 - 1, 0] = T[index*n_of_var + n1 - 1, 0] + elem.i(opindex, v_ports)
						if n2:
							T[index*n_of_var + n2 - 1, 0] = T[index*n_of_var + n2 - 1, 0] - elem.i(opindex, v_ports)
						for dpindex in range(len(dports)):
							dn1, dn2 = dports[dpindex]
							if n1:
								if dn1:
									J[index*n_of_var + n1-1, index*n_of_var + dn1-1] = \
									J[index*n_of_var + n1-1, index*n_of_var + dn1-1] + elem.g(opindex, v_ports, dpindex)
								if dn2:
									J[index*n_of_var + n1-1, index*n_of_var + dn2-1] =\
									J[index*n_of_var + n1-1, index * n_of_var + dn2-1] - 1.0*elem.g(opindex, v_ports, dpindex)
							if n2:
								if dn1:	
									J[index*n_of_var + n2-1, index*n_of_var + dn1-1] = \
									J[index*n_of_var + n2-1, index*n_of_var + dn1-1] - 1.0*elem.g(opindex, v_ports, dpindex)
								if dn2:
									J[index*n_of_var + n2-1, index*n_of_var + dn2-1] =\
									J[index*n_of_var + n2-1, index*n_of_var + dn2-1] + elem.g(opindex, v_ports, dpindex)

		J = J + CMAT
		residuo = CMAT*x + T + Tf + Tt
		dx = -1 * (numpy.linalg.inv(J) *  residuo)
		#td
		for index in xrange(points):
			td[index, 0] = dc_analysis.get_td(dx[index*n_of_var:(index+1)*n_of_var, 0], locked_nodes, n=-1)
		x = x + min(abs(td))[0, 0] * dx
		# convergence check
		converged = convergence_check(dx, x, nv_indices, ni_indices, vector_norm)
		if converged:
			break
		tick.step(verbose > 2)
	
		if options.shooting_max_nr_iter and iteration == options.shooting_max_nr_iter:
			printing.print_general_error("Hitted SHOOTING_MAX_NR_ITER (" + str(options.shooting_max_nr_iter) + "), iteration halted.")
			converged = False
			break
		else:
			iteration = iteration + 1

	tick.hide(verbose > 2)
	if converged:
		printing.print_info_line(("done.", 3), verbose)
		t = numpy.mat(numpy.arange(points)*step)
		t = t.reshape((1, points))
		x = x.reshape((points, n_of_var))
		sol = results.pss_solution(circ=circ, method="brute-force", period=period, outfile=data_filename, t_array=t, x_array=x.T)
	else:
		print "failed."
		sol = None
	return sol
예제 #7
0
def shooting(circ, period, step=None, x0=None, points=None, autonomous=False,
             mna=None, Tf=None, D=None, outfile='stdout', vector_norm=lambda v: max(abs(v)), verbose=3):
    """Performs a periodic steady state analysis based on the algorithm described in
    Brambilla, A.; D'Amore, D., "Method for steady-state simulation of
    strongly nonlinear circuits in the time domain," Circuits and
    Systems I: Fundamental Theory and Applications, IEEE Transactions on,
    vol.48, no.7, pp.885-889, Jul 2001
    URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=933329&isnumber=20194

    The results have been computed again by me, the formulas are not exactly the
    same, but the idea behind the shooting algorithm is.

    This method allows us to have a period with many points without having to
    invert a huge matrix (and being limited to the maximum matrix size).

    A tran is performed to initialize the solver.

    We compute the change in the last point, calculating several matrices in
    the process.
    From that, with the same matrices we calculate the changes in all points,
    starting from 0 (which is the same as the last one), then 1, ...

    Key points:
    - Only not autonomous circuits are supported.
    - The time step is constant
    - Implicit euler is used as DF

    Parameters:
    circ is the circuit description class
    period is the period of the solution
    mna, D, Tf are not compulsory they will be computed if they're set to None
    step is the time step between consecutive points
    points is the number of points to be used
    step and points are mutually exclusive options:
    - if step is specified, the number of points will be automatically determined
    - if points is set, the step will be automatically determined
    - if none of them is set, options.shooting_default_points will be used as points
    autonomous has to be False, autonomous circuits are not supported
    outfile is the output filename. Defaults to stdout.
    verbose is set to zero (print errors only) if datafilename == 'stdout'.

    Returns: nothing
    """

    if outfile == "stdout":
        verbose = 0

    printing.print_info_line(
        ("Starting periodic steady state analysis:", 3), verbose)
    printing.print_info_line(("Method: shooting", 3), verbose)

    if isinstance(x0, results.op_solution):
        x0 = x0.asmatrix()
    if mna is None or Tf is None:
        (mna, Tf) = dc_analysis.generate_mna_and_N(circ, verbose=verbose)
        mna = utilities.remove_row_and_col(mna)
        Tf = utilities.remove_row(Tf, rrow=0)
    elif not mna.shape[0] == Tf.shape[0]:
        printing.print_general_error(
            "mna matrix and N vector have different number of rows.")
        sys.exit(0)

    if D is None:
        D = transient.generate_D(circ, [mna.shape[0], mna.shape[0]])
        D = utilities.remove_row_and_col(D)
    elif not mna.shape == D.shape:
        printing.print_general_error(
            "mna matrix and D matrix have different sizes.")
        sys.exit(0)

    (points, step) = check_step_and_points(step, points, period)
    print "points", points
    print "step", step

    n_of_var = mna.shape[0]
    locked_nodes = circ.get_locked_nodes()

    printing.print_info_line(
        ("Starting transient analysis for algorithm init: tstop=%g, tstep=%g... " % (10 * points * step, step), 3), verbose, print_nl=False)
    xtran = transient.transient_analysis(
        circ=circ, tstart=0, tstep=step, tstop=10 * points * step, method="TRAP", x0=None, mna=mna, N=Tf,
        D=D, use_step_control=False, outfile=outfile + ".tran", return_req_dict={"points": points}, verbose=0)
    if xtran is None:
        print "failed."
        return None
    printing.print_info_line(("done.", 3), verbose)

    x = []
    for index in range(points):
        x.append(xtran[index * n_of_var:(index + 1) * n_of_var, 0])

    tick = ticker.ticker(increments_for_step=1)

    MAass_static, MBass = build_static_MAass_and_MBass(mna, D, step)

    # This contains
    # the time invariant part, Tf
    # time variable component: Tt this is always the same, since the time interval is the same
    # this holds all time-dependent sources (both V/I).
    Tass_static_vector = build_Tass_static_vector(
        circ, Tf, points, step, tick, n_of_var, verbose)

    converged = False
    printing.print_info_line(("Solving... ", 3), verbose, print_nl=False)
    tick.reset()
    tick.display(verbose > 2)

    iteration = 0  # newton iteration counter
    conv_counter = 0

    while True:
        dx = []
        Tass_variable_vector = []
        MAass_variable_vector = []
        for index in range(points):
            if index == 0:
                xn_minus_1 = x[points - 1]
            else:
                xn_minus_1 = x[index - 1]
            MAass_variable, Tass_variable = get_variable_MAass_and_Tass(
                circ, x[index], xn_minus_1, mna, D, step, n_of_var)
            MAass_variable_vector.append(MAass_variable + MAass_static)
            Tass_variable_vector.append(
                Tass_variable + Tass_static_vector[index])

        dxN = compute_dxN(circ, MAass_variable_vector, MBass,
                          Tass_variable_vector, n_of_var, points, verbose=verbose)
        td = dc_analysis.get_td(dxN, locked_nodes, n=-1)
        x[points - 1] = td * dxN + x[points - 1]

        for index in range(points - 1):
            if index == 0:
                dxi_minus_1 = dxN
            else:
                dxi_minus_1 = dx[index - 1]
            dx.append(
                compute_dx(MAass_variable_vector[index], MBass, Tass_variable_vector[index], dxi_minus_1))
            td = dc_analysis.get_td(dx[index], locked_nodes, n=-1)
            x[index] = td * dx[index] + x[index]
        dx.append(dxN)

        if (vector_norm_wrapper(dx, vector_norm) < min(options.ver, options.ier) * vector_norm_wrapper(x, vector_norm) + min(options.vea, options.iea)):  # \
        # and (dc_analysis.vector_norm(residuo) <
        # options.er*dc_analysis.vector_norm(x) + options.ea):
            if conv_counter == 3:
                converged = True
                break
            else:
                conv_counter = conv_counter + 1
        elif vector_norm(dx[points - 1]) is numpy.nan:  # needs work fixme
            raise OverflowError
            # break
        else:
            conv_counter = 0
            tick.step(verbose > 2)

        if options.shooting_max_nr_iter and iteration == options.shooting_max_nr_iter:
            printing.print_general_error(
                "Hitted SHOOTING_MAX_NR_ITER (" + str(options.shooting_max_nr_iter) + "), iteration halted.")
            converged = False
            break
        else:
            iteration = iteration + 1

    tick.hide(verbose > 2)
    if converged:
        printing.print_info_line(("done.", 3), verbose)
        t = numpy.mat(numpy.arange(points) * step)
        t = t.reshape((1, points))
        xmat = x[0]
        for index in xrange(1, points):
            xmat = numpy.concatenate((xmat, x[index]), axis=1)
        sol = results.pss_solution(
            circ=circ, method="shooting", period=period, outfile=outfile, t_array=t, x_array=xmat)
        # print_results(circ, x, fdata, points, step)
    else:
        print "failed."
        sol = None
    return sol
예제 #8
0
파일: dc_analysis.py 프로젝트: vovkd/ahkab
def op_analysis(circ, x0=None, guess=True, data_filename=None, verbose=3):
    """Runs an Operating Point (OP) analysis
	circ: the circuit instance on which the simulation is run
	x0: is the initial guess to be used to start the NR mdn_solver
	guess: if set to True and x0 is None, it will generate a 'smart' guess
	verbose: verbosity level from 0 (silent) to 6 (debug).

	Returns a Operation Point result, if successful, None otherwise.
	"""
    # use_gmin = True
    # solved=False
    # x0 = numpy.mat(numpy.zeros((1,2)))

    (mna, N) = generate_mna_and_N(circ)

    printing.print_info_line(("MNA matrix and constant term (complete):", 4), verbose)
    printing.print_info_line((str(mna), 4), verbose)
    printing.print_info_line((str(N), 4), verbose)

    # lets trash the unneeded col & row
    printing.print_info_line(("Removing unneeded row and column...", 4), verbose)
    mna = utilities.remove_row_and_col(mna)
    N = utilities.remove_row(N, rrow=0)

    printing.print_info_line(("Starting op analysis:", 2), verbose)

    if x0 is None and guess:
        x0 = dc_guess.get_dc_guess(circ, verbose=verbose)
        # if x0 is not None, use that

    printing.print_info_line(("Solving with Gmin:", 4), verbose)
    Gmin_matrix = build_gmin_matrix(circ, options.gmin, mna.shape[0], verbose - 2)
    (x1, error1, solved1, n_iter1) = dc_solve(mna, N, circ, Gmin=Gmin_matrix, x0=x0, verbose=verbose)

    # We'll check the results now. Recalculate them without Gmin (using previsious solution as initial guess)
    # and check that differences on nodes and current do not exceed the tolerances.
    if solved1:
        op1 = results.op_solution(x1, error1, circ, outfile=data_filename, iterations=n_iter1)
        printing.print_info_line(("Solving without Gmin:", 4), verbose)
        (x2, error2, solved2, n_iter2) = dc_solve(mna, N, circ, Gmin=None, x0=x1, verbose=verbose)

        if not solved2:
            printing.print_general_error("Can't solve without Gmin.")
            if verbose:
                print "Displaying latest valid results."
                op1.write_to_file(filename="stdout")
            opsolution = op1
        else:
            op2 = results.op_solution(x2, error2, circ, outfile=data_filename, iterations=n_iter1 + n_iter2)
            op2.gmin = 0
            badvars = results.op_solution.gmin_check(op2, op1)
            printing.print_result_check(badvars, verbose=verbose)
            check_ok = not (len(badvars) > 0)
            if not check_ok and verbose:
                print "Solution with Gmin:"
                op1.write_to_file(filename="stdout")
                print "Solution without Gmin:"
            if verbose:
                op2.write_to_file(filename="stdout")
            opsolution = op2

        if data_filename != "stdout" and data_filename is not None:
            opsolution.write_to_file()
    else:
        printing.print_general_error("Couldn't solve the circuit. Giving up.")
        opsolution = None

    return opsolution
예제 #9
0
파일: ac.py 프로젝트: vovkd/ahkab
def ac_analysis(circ, start, nsteps, stop, step_type, xop=None, mna=None,\
	AC=None, Nac=None, J=None, data_filename="stdout", verbose=3):
	"""Performs an AC analysis of the circuit (described by circ).
	"""
	
	if data_filename == 'stdout':
		verbose = 0

	#check step/start/stop parameters
	if start == 0:
		printing.print_general_error("AC analysis has start frequency = 0")
                sys.exit(5)
	if start > stop:
		printing.print_general_error("AC analysis has start > stop")
		sys.exit(1)
	if nsteps < 1:
		printing.print_general_error("AC analysis has number of steps <= 1")
		sys.exit(1)
	if step_type == options.ac_log_step:
		omega_iter = utilities.log_axis_iterator(stop, start, nsteps)
	elif step_type == options.ac_lin_step:
		omega_iter = utilities.lin_axis_iterator(stop, start, nsteps)
	else:
		printing.print_general_error("Unknown sweep type.") 
		sys.exit(1)
	
	tmpstr = "Vea =", options.vea, "Ver =", options.ver, "Iea =", options.iea, "Ier =", \
	options.ier, "max_ac_nr_iter =", options.ac_max_nr_iter
	printing.print_info_line((tmpstr, 5), verbose)
	del tmpstr
	
	printing.print_info_line(("Starting AC analysis: ", 1), verbose)
	tmpstr = "w: start = %g Hz, stop = %g Hz, %d steps" % (start, stop, nsteps)
	printing.print_info_line((tmpstr, 3), verbose)
	del tmpstr

	#It's a good idea to call AC with prebuilt MNA matrix if the circuit is big
	if mna is None:
		(mna, N) = dc_analysis.generate_mna_and_N(circ)
		del N
		mna = utilities.remove_row_and_col(mna)
	if Nac is None:
		Nac = generate_Nac(circ)
		Nac = utilities.remove_row(Nac, rrow=0)
	if AC is None:
		AC = generate_AC(circ, [mna.shape[0], mna.shape[0]])
		AC = utilities.remove_row_and_col(AC)

	
	if circ.is_nonlinear():
		if J is not None:
			pass
			# we used the supplied linearization matrix
		else:
			if xop is None:
				printing.print_info_line(("Starting OP analysis to get a linearization point...", 3), verbose, print_nl=False)
				#silent OP
				xop = dc_analysis.op_analysis(circ, verbose=0)
				if xop is None: #still! Then op_analysis has failed!
					printing.print_info_line(("failed.", 3), verbose)
					printing.print_general_error("OP analysis failed, no linearization point available. Quitting.") 
					sys.exit(3)
				else:
					printing.print_info_line(("done.", 3), verbose)
			printing.print_info_line(("Linearization point (xop):", 5), verbose)
			if verbose > 4: xop.print_short()
			printing.print_info_line(("Linearizing the circuit...", 5), verbose, print_nl=False)
			J = generate_J(xop=xop.asmatrix(), circ=circ, mna=mna, Nac=Nac, data_filename=data_filename, verbose=verbose)
			printing.print_info_line((" done.", 5), verbose)
			# we have J, continue
	else: #not circ.is_nonlinear()
		# no J matrix is required.
		J = 0
	
	printing.print_info_line(("MNA (reduced):", 5), verbose)
	printing.print_info_line((str(mna), 5), verbose)
	printing.print_info_line(("AC (reduced):", 5), verbose)
	printing.print_info_line((str(AC), 5), verbose)
	printing.print_info_line(("J (reduced):", 5), verbose)
	printing.print_info_line((str(J), 5), verbose)
	printing.print_info_line(("Nac (reduced):", 5), verbose)
	printing.print_info_line((str(Nac), 5), verbose)
	
	sol = results.ac_solution(circ, ostart=start, ostop=stop, opoints=nsteps, stype=step_type, op=xop, outfile=data_filename)

	# setup the initial values to start the iteration:
	nv = len(circ.nodes_dict)
	j = numpy.complex('j')

	Gmin_matrix = dc_analysis.build_gmin_matrix(circ, options.gmin, mna.shape[0], verbose)

	iter_n = 0  # contatore d'iterazione
	#printing.print_results_header(circ, fdata, print_int_nodes=options.print_int_nodes, print_omega=True)
	printing.print_info_line(("Solving... ", 3), verbose, print_nl=False)
	tick = ticker.ticker(increments_for_step=1)
	tick.display(verbose > 1)

	x = xop
	for omega in omega_iter:
		(x, error, solved, n_iter) = dc_analysis.dc_solve(mna=(mna + numpy.multiply(j*omega, AC) + J), \
		Ndc=Nac,  Ntran=0, circ=circuit.circuit(title="Dummy circuit for AC", filename=None), Gmin=Gmin_matrix, x0=x, \
		time=None, locked_nodes=None, MAXIT=options.ac_max_nr_iter, skip_Tt=True, verbose=0)
		if solved:
			tick.step(verbose > 1)
			iter_n = iter_n + 1
			# hooray!
			sol.add_line(omega, x)
		else:
			break
	
	tick.hide(verbose > 1)
	
	if solved:
		printing.print_info_line(("done.", 1), verbose)
		ret_value = sol
	else:
		printing.print_info_line(("failed.", 1), verbose)
		ret_value =  None
	
	return ret_value
예제 #10
0
파일: dc_guess.py 프로젝트: vovkd/ahkab
def get_dc_guess(circ, verbose=3):
    """This method tries to build a DC guess, according to what the
	elements suggest.
	A element can suggest its guess through the elem.dc_guess field.
	
	verbose: verbosity level (from 0 silent to 5 debug)
	
	Returns: the dc_guess (matrix) or None
	"""
    if verbose:
        sys.stdout.write("Calculating guess: ")
        sys.stdout.flush()

    # A DC guess has meaning only if the circuit has NL elements
    if not circ.is_nonlinear():
        if verbose:
            print "skipped. (linear circuit)"
        return None

    if verbose > 3:
        print ""

    nv = len(circ.nodes_dict)
    M = numpy.mat(numpy.zeros((1, nv)))
    T = numpy.mat(numpy.zeros((1, 1)))
    index = 0
    v_eq = 0  # number of current equations
    one_element_with_dc_guess_found = False

    for elem in circ.elements:
        # In the meanwhile, check how many current equations are
        # required to solve the circuit
        if circuit.is_elem_voltage_defined(elem):
            v_eq = v_eq + 1
        # This is the main focus: build a system of equations (M*x = T)
        if hasattr(elem, "dc_guess") and elem.dc_guess is not None:
            if not one_element_with_dc_guess_found:
                one_element_with_dc_guess_found = True
            if elem.is_nonlinear:
                port_index = 0
                for (n1, n2) in elem.ports:
                    if n1 == n2:
                        continue
                    if index:
                        M = utilities.expand_matrix(M,
                                                    add_a_row=True,
                                                    add_a_col=False)
                        T = utilities.expand_matrix(T,
                                                    add_a_row=True,
                                                    add_a_col=False)
                    M[index, n1] = +1
                    M[index, n2] = -1
                    T[index] = elem.dc_guess[port_index]
                    port_index = port_index + 1
                    index = index + 1
            else:
                if elem.n1 == elem.n2:
                    continue
                if index:
                    M = utilities.expand_matrix(M,
                                                add_a_row=True,
                                                add_a_col=False)
                    T = utilities.expand_matrix(T,
                                                add_a_row=True,
                                                add_a_col=False)
                M[index, elem.n1] = +1
                M[index, elem.n2] = -1
                T[index] = elem.dc_guess[0]
                index = index + 1

    if verbose == 5:
        print "DBG: get_dc_guess(): M and T, no reduction"
        print M
        print T
    M = utilities.remove_row_and_col(M, rrow=10 * M.shape[0], rcol=0)

    if not one_element_with_dc_guess_found:
        if verbose == 5:
            print "DBG: get_dc_guess(): no element has a dc_guess"
        elif verbose <= 3:
            print "skipped."
        return None

    # We wish to find the linearly dependent lines of the M matrix.
    # The matrix is made by +1, -1, 0 elements.
    # Hence, if two lines are linearly dependent, one of these equations
    # has to be satisfied: (L1, L2 are two lines)
    # L1 + L2 = 0 (vector)
    # L2 - L1 = 0 (vector)
    # This is tricky, because I wish to remove lines of the matrix while
    # browsing it.
    # We browse the matrix by line from bottom up and compare each line
    # with the upper lines. If a linearly dep. line is found, we remove
    # the current line.
    # Then break from the loop, get the next line (bottom up), which is
    # the same we were considering before; compare with the upper lines..
    # Not optimal, but it works.
    for i in range(M.shape[0] - 1, -1, -1):
        for j in range(i - 1, -1, -1):
            #print i, j, M[i, :], M[j, :]
            dummy1 = M[i, :] - M[j, :]
            dummy2 = M[i, :] + M[j, :]
            if not dummy1.any() or not dummy2.any():
                #print "REM:", M[i, :]
                M = utilities.remove_row(M, rrow=i)
                T = utilities.remove_row(T, rrow=i)
                break
    if verbose == 5:
        print "DBG: get_dc_guess(): M and T, after removing LD lines"
        print M
        print T

    # Remove empty columns:
    # If a column is empty, we have no guess regarding the corresponding
    # node. It makes the matrix singular. -> Remove the col & remember
    # that we are _not_ calculating a guess for it.
    removed_index = []
    for i in range(M.shape[1] - 1, -1, -1):
        if not M[:, i].any():
            M = utilities.remove_row_and_col(M, rrow=M.shape[0], rcol=i)
            removed_index.append(i)

    if verbose > 3:
        print "DBG: get_dc_guess(): M and T, after removing empty columns."
        print M
        print "T\n", T

    # Now, we have a set of equations to be solved.
    # There are three cases:
    # 1. The M matrix has a different number of rows and columns.
    #    We use the Moore-Penrose matrix inverse to get
    #    the shortest length least squares solution to the problem
    #          M*x + T = 0
    # 2. The matrix is square.
    #    It seems that if the circuit is not pathological,
    #    we are likely to find a solution (the matrix has det != 0).
    #    I'm not sure about this though.

    if M.shape[0] != M.shape[1]:
        Rp = numpy.mat(numpy.linalg.pinv(M)) * T
    else:  # case M.shape[0] == M.shape[1], use normal
        if numpy.linalg.det(M) != 0:
            try:
                Rp = numpy.linalg.inv(M) * T
            except numpy.linalg.linalg.LinAlgError:
                eig = numpy.linalg.eig(M)[0]
                cond = abs(eig).max() / abs(eig).min()
                if verbose:
                    print "cond=" + str(cond) + ". No guess."
                return None
        else:
            if verbose:
                print "Guess matrix is singular. No guess."
            return None

    # Now we want to:
    # 1. Add voltages for the nodes for which we have no clue to guess.
    # 2. Append to each vector of guesses the values for currents in
    #    voltage defined elem.
    # Both them are set to 0
    for index in removed_index:
        Rp = numpy.concatenate(( \
        numpy.concatenate((Rp[:index, 0], \
        numpy.mat(numpy.zeros((1, 1)))), axis=0), \
        Rp[index:, 0]), axis=0)
    # add the 0s for the currents due to the voltage defined
    # elements (we have no guess for those...)
    if v_eq > 0:
        Rp = numpy.concatenate((Rp, numpy.mat(numpy.zeros((v_eq, 1)))), axis=0)

    if verbose == 5:
        print circ.nodes_dict

    if verbose and verbose < 4:
        print "done."
    if verbose > 3:
        print "Guess:"
        print Rp

    return Rp
예제 #11
0
파일: dc_guess.py 프로젝트: vovkd/ahkab
def get_dc_guess(circ, verbose=3):
	"""This method tries to build a DC guess, according to what the
	elements suggest.
	A element can suggest its guess through the elem.dc_guess field.
	
	verbose: verbosity level (from 0 silent to 5 debug)
	
	Returns: the dc_guess (matrix) or None
	"""
	if verbose: 
		sys.stdout.write("Calculating guess: ")
		sys.stdout.flush()
	
	# A DC guess has meaning only if the circuit has NL elements
	if not circ.is_nonlinear():
		if verbose:
			print "skipped. (linear circuit)"
		return None
	
	
	if verbose > 3:
		print ""

	nv = len(circ.nodes_dict)
	M = numpy.mat(numpy.zeros((1, nv)))
	T = numpy.mat(numpy.zeros((1, 1)))
	index = 0
	v_eq = 0 # number of current equations
	one_element_with_dc_guess_found = False

	for elem in circ.elements:
		# In the meanwhile, check how many current equations are 
		# required to solve the circuit
		if circuit.is_elem_voltage_defined(elem):
			v_eq = v_eq + 1
		# This is the main focus: build a system of equations (M*x = T)
		if hasattr(elem, "dc_guess") and elem.dc_guess is not None:
			if not one_element_with_dc_guess_found:
				one_element_with_dc_guess_found = True
			if elem.is_nonlinear:
				port_index = 0
				for (n1, n2) in elem.ports:
					if n1 == n2:
						continue
					if index:
						M = utilities.expand_matrix(M, add_a_row=True, add_a_col=False)
						T = utilities.expand_matrix(T, add_a_row=True, add_a_col=False)
					M[index, n1] = +1
					M[index, n2] = -1
					T[index] = elem.dc_guess[port_index]
					port_index = port_index + 1
					index = index + 1
			else:
				if elem.n1 == elem.n2:
					continue
				if index:
					M = utilities.expand_matrix(M, add_a_row=True, add_a_col=False)
					T = utilities.expand_matrix(T, add_a_row=True, add_a_col=False)
				M[index, elem.n1] = +1
				M[index, elem.n2] = -1
				T[index] = elem.dc_guess[0]
				index = index + 1
	
	if verbose == 5:
		print "DBG: get_dc_guess(): M and T, no reduction"
		print M
		print T
	M = utilities.remove_row_and_col(M, rrow=10*M.shape[0], rcol=0)
	
	if not one_element_with_dc_guess_found:
		if verbose == 5:
			print "DBG: get_dc_guess(): no element has a dc_guess"
		elif verbose <= 3:
			print "skipped."
		return None
	
	# We wish to find the linearly dependent lines of the M matrix.
	# The matrix is made by +1, -1, 0 elements. 
	# Hence, if two lines are linearly dependent, one of these equations
	# has to be satisfied: (L1, L2 are two lines)
	# L1 + L2 = 0 (vector)
	# L2 - L1 = 0 (vector)
	# This is tricky, because I wish to remove lines of the matrix while
	# browsing it.
	# We browse the matrix by line from bottom up and compare each line 
	# with the upper lines. If a linearly dep. line is found, we remove 
	# the current line.
	# Then break from the loop, get the next line (bottom up), which is
	# the same we were considering before; compare with the upper lines..
	# Not optimal, but it works.
	for i in range(M.shape[0]-1, -1, -1):
		for j in range(i-1, -1, -1):
			#print i, j, M[i, :], M[j, :]
			dummy1 = M[i, :] - M[j, :]
			dummy2 = M[i, :] + M[j, :]
			if not dummy1.any() or not dummy2.any():
				#print "REM:", M[i, :]
				M = utilities.remove_row(M, rrow=i)
				T = utilities.remove_row(T, rrow=i)
				break
	if verbose == 5:
		print "DBG: get_dc_guess(): M and T, after removing LD lines"
		print M
		print T
			
	# Remove empty columns:
	# If a column is empty, we have no guess regarding the corresponding
	# node. It makes the matrix singular. -> Remove the col & remember
	# that we are _not_ calculating a guess for it.
	removed_index = []
	for i in range(M.shape[1]-1, -1, -1):
		if not M[:, i].any():
			M = utilities.remove_row_and_col(M, rrow=M.shape[0], rcol=i)
			removed_index.append(i)
	
	if verbose > 3:
		print "DBG: get_dc_guess(): M and T, after removing empty columns."
		print M
		print "T\n", T

	# Now, we have a set of equations to be solved.
	# There are three cases:
	# 1. The M matrix has a different number of rows and columns.
	#    We use the Moore-Penrose matrix inverse to get 
	#    the shortest length least squares solution to the problem
	#          M*x + T = 0
	# 2. The matrix is square.
	#    It seems that if the circuit is not pathological,
	#    we are likely to find a solution (the matrix has det != 0).
	#    I'm not sure about this though.
	
	if M.shape[0] != M.shape[1]:
		Rp = numpy.mat(numpy.linalg.pinv(M)) * T
	else: # case M.shape[0] == M.shape[1], use normal
		if numpy.linalg.det(M) != 0:
			try:
				Rp = numpy.linalg.inv(M) * T
			except numpy.linalg.linalg.LinAlgError:
				eig = numpy.linalg.eig(M)[0]
				cond = abs(eig).max()/abs(eig).min()
				if verbose:
					print "cond=" +str(cond)+". No guess."
				return None
		else:
			if verbose:
				print "Guess matrix is singular. No guess."
			return None
			

	# Now we want to:
	# 1. Add voltages for the nodes for which we have no clue to guess.
	# 2. Append to each vector of guesses the values for currents in 
	#    voltage defined elem.
	# Both them are set to 0
	for index in removed_index:
		Rp = numpy.concatenate(( \
		numpy.concatenate((Rp[:index, 0], \
		numpy.mat(numpy.zeros((1, 1)))), axis=0), \
		Rp[index:, 0]), axis=0)
	# add the 0s for the currents due to the voltage defined 
	# elements (we have no guess for those...)
	if v_eq > 0:
		Rp = numpy.concatenate((Rp, numpy.mat(numpy.zeros((v_eq, 1)))), axis=0)
	
	if verbose == 5:
		print circ.nodes_dict
	
	if verbose and verbose < 4:
		print "done."
	if verbose > 3:
		print "Guess:"
		print Rp
	
	return Rp
예제 #12
0
파일: shooting.py 프로젝트: vovkd/ahkab
def shooting(circ,
             period,
             step=None,
             mna=None,
             Tf=None,
             D=None,
             points=None,
             autonomous=False,
             data_filename='stdout',
             vector_norm=lambda v: max(abs(v)),
             verbose=3):
    """Performs a periodic steady state analysis based on the algorithm described in
	Brambilla, A.; D'Amore, D., "Method for steady-state simulation of 
	strongly nonlinear circuits in the time domain," Circuits and 
	Systems I: Fundamental Theory and Applications, IEEE Transactions on, 
	vol.48, no.7, pp.885-889, Jul 2001
	URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=933329&isnumber=20194
	
	The results have been computed again by me, the formulas are not exactly the 
	same, but the idea behind the shooting algorithm is.
	
	This method allows us to have a period with many points without having to
	invert a huge matrix (and being limited to the maximum matrix size).

	A tran is performed to initialize the solver.
	
	We compute the change in the last point, calculating several matrices in
	the process.
	From that, with the same matrices we calculate the changes in all points, 
	starting from 0 (which is the same as the last one), then 1, ...

	Key points:
	- Only not autonomous circuits are supported.
	- The time step is constant
	- Implicit euler is used as DF
	
	Parameters:
	circ is the circuit description class
	period is the period of the solution
	mna, D, Tf are not compulsory they will be computed if they're set to None
	step is the time step between consecutive points
	points is the number of points to be used
	step and points are mutually exclusive options:
	- if step is specified, the number of points will be automatically determined 
	- if points is set, the step will be automatically determined
	- if none of them is set, options.shooting_default_points will be used as points
	autonomous has to be False, autonomous circuits are not supported
	data_filename is the output filename. Defaults to stdout.
	verbose is set to zero (print errors only) if datafilename == 'stdout'.

	Returns: nothing
	"""

    if data_filename == "stdout":
        verbose = 0

    printing.print_info_line(("Starting periodic steady state analysis:", 3),
                             verbose)
    printing.print_info_line(("Method: shooting", 3), verbose)

    if mna is None or Tf is None:
        (mna, Tf) = dc_analysis.generate_mna_and_N(circ)
        mna = utilities.remove_row_and_col(mna)
        Tf = utilities.remove_row(Tf, rrow=0)
    elif not mna.shape[0] == Tf.shape[0]:
        printing.print_general_error(
            "mna matrix and N vector have different number of rows.")
        sys.exit(0)

    if D is None:
        D = transient.generate_D(circ, [mna.shape[0], mna.shape[0]])
        D = utilities.remove_row_and_col(D)
    elif not mna.shape == D.shape:
        printing.print_general_error(
            "mna matrix and D matrix have different sizes.")
        sys.exit(0)

    (points, step) = check_step_and_points(step, points, period)
    print "points", points
    print "step", step

    n_of_var = mna.shape[0]
    locked_nodes = circ.get_locked_nodes()

    printing.print_info_line((
        "Starting transient analysis for algorithm init: tstop=%g, tstep=%g... "
        % (10 * points * step, step), 3),
                             verbose,
                             print_nl=False)
    xtran = transient.transient_analysis(circ=circ, tstart=0, tstep=step, tstop=10*points*step, method="TRAP", x0=None, mna=mna, N=Tf, \
           D=D, use_step_control=False, data_filename=data_filename+".tran", return_req_dict={"points":points}, verbose=0)
    if xtran is None:
        print "failed."
        return None
    printing.print_info_line(("done.", 3), verbose)

    x = []
    for index in range(points):
        x.append(xtran[index * n_of_var:(index + 1) * n_of_var, 0])

    tick = ticker.ticker(increments_for_step=1)

    MAass_static, MBass = build_static_MAass_and_MBass(mna, D, step)

    # This contains
    # the time invariant part, Tf
    # time variable component: Tt this is always the same, since the time interval is the same
    # this holds all time-dependent sources (both V/I).
    Tass_static_vector = build_Tass_static_vector(circ, Tf, points, step, tick,
                                                  n_of_var, verbose)

    converged = False
    printing.print_info_line(("Solving... ", 3), verbose, print_nl=False)
    tick.reset()
    tick.display(verbose > 2)

    iteration = 0  # newton iteration counter
    conv_counter = 0

    while True:
        dx = []
        Tass_variable_vector = []
        MAass_variable_vector = []
        for index in range(points):
            if index == 0:
                xn_minus_1 = x[points - 1]
            else:
                xn_minus_1 = x[index - 1]
            MAass_variable, Tass_variable = get_variable_MAass_and_Tass(
                circ, x[index], xn_minus_1, mna, D, step, n_of_var)
            MAass_variable_vector.append(MAass_variable + MAass_static)
            Tass_variable_vector.append(Tass_variable +
                                        Tass_static_vector[index])

        dxN = compute_dxN(circ,
                          MAass_variable_vector,
                          MBass,
                          Tass_variable_vector,
                          n_of_var,
                          points,
                          verbose=verbose)
        td = dc_analysis.get_td(dxN, locked_nodes, n=-1)
        x[points - 1] = td * dxN + x[points - 1]

        for index in range(points - 1):
            if index == 0:
                dxi_minus_1 = dxN
            else:
                dxi_minus_1 = dx[index - 1]
            dx.append(
                compute_dx(MAass_variable_vector[index], MBass,
                           Tass_variable_vector[index], dxi_minus_1))
            td = dc_analysis.get_td(dx[index], locked_nodes, n=-1)
            x[index] = td * dx[index] + x[index]
        dx.append(dxN)

        if (vector_norm_wrapper(dx, vector_norm) <
                min(options.ver, options.ier) * vector_norm_wrapper(
                    x, vector_norm) + min(options.vea, options.iea)):  #\
            #and (dc_analysis.vector_norm(residuo) < options.er*dc_analysis.vector_norm(x) + options.ea):
            if conv_counter == 3:
                converged = True
                break
            else:
                conv_counter = conv_counter + 1
        elif vector_norm(dx[points - 1]) is numpy.nan:  #needs work fixme
            raise OverflowError
            #break
        else:
            conv_counter = 0
            tick.step(verbose > 2)

        if options.shooting_max_nr_iter and iteration == options.shooting_max_nr_iter:
            printing.print_general_error("Hitted SHOOTING_MAX_NR_ITER (" +
                                         str(options.shooting_max_nr_iter) +
                                         "), iteration halted.")
            converged = False
            break
        else:
            iteration = iteration + 1

    tick.hide(verbose > 2)
    if converged:
        printing.print_info_line(("done.", 3), verbose)
        t = numpy.mat(numpy.arange(points) * step)
        t = t.reshape((1, points))
        xmat = x[0]
        for index in xrange(1, points):
            xmat = numpy.concatenate((xmat, x[index]), axis=1)
        sol = results.pss_solution(circ=circ,
                                   method="shooting",
                                   period=period,
                                   outfile=data_filename,
                                   t_array=t,
                                   x_array=xmat)
        #print_results(circ, x, fdata, points, step)
    else:
        print "failed."
        sol = None
    return sol
예제 #13
0
파일: bfpss.py 프로젝트: itdaniher/ahkab
def bfpss(circ,
          period,
          step=None,
          points=None,
          autonomous=False,
          x0=None,
          mna=None,
          Tf=None,
          D=None,
          outfile='stdout',
          vector_norm=lambda v: max(abs(v)),
          verbose=3):
    """Performs a PSS analysis.

    Time step is constant, IE will be used as DF

    Parameters:
    circ is the circuit description class
    period is the period of the solution
    mna, D, Tf are not compulsory they will be computed if they're set to None
    step is the time step between consecutive points
    points is the number of points to be used
    step and points are mutually exclusive options:
    - if step is specified, the number of points will be automatically determined
    - if points is set, the step will be automatically determined
    - if none of them is set, options.shooting_default_points will be used as points
    autonomous has to be False, autonomous circuits are not supported
    x0 is the initial guess to be used. Needs work.
    outfile is the output filename. Defaults to stdout.
    verbose is set to zero (print errors only) if datafilename == 'stdout'.

    Returns: nothing
    """
    if outfile == "stdout":
        verbose = 0

    printing.print_info_line(("Starting periodic steady state analysis:", 3),
                             verbose)
    printing.print_info_line(("Method: brute-force", 3), verbose)

    if mna is None or Tf is None:
        (mna, Tf) = dc_analysis.generate_mna_and_N(circ, verbose=verbose)
        mna = utilities.remove_row_and_col(mna)
        Tf = utilities.remove_row(Tf, rrow=0)
    elif not mna.shape[0] == Tf.shape[0]:
        printing.print_general_error(
            "mna matrix and N vector have different number of rows.")
        sys.exit(0)

    if D is None:
        D = transient.generate_D(circ, [mna.shape[0], mna.shape[0]])
        D = utilities.remove_row_and_col(D)
    elif not mna.shape == D.shape:
        printing.print_general_error(
            "mna matrix and D matrix have different sizes.")
        sys.exit(0)

    (points, step) = check_step_and_points(step, points, period)

    n_of_var = mna.shape[0]
    locked_nodes = circ.get_locked_nodes()
    tick = ticker.ticker(increments_for_step=1)

    CMAT = build_CMAT(mna,
                      D,
                      step,
                      points,
                      tick,
                      n_of_var=n_of_var,
                      verbose=verbose)

    x = build_x(mna,
                step,
                points,
                tick,
                x0=x0,
                n_of_var=n_of_var,
                verbose=verbose)

    Tf = build_Tf(Tf, points, tick, n_of_var=n_of_var, verbose=verbose)

    # time variable component: Tt this is always the same in each iter. So we build it once for all
    # this holds all time-dependent sources (both V/I).
    Tt = build_Tt(circ, points, step, tick, n_of_var=n_of_var, verbose=verbose)

    # Indices to differentiate between currents and voltages in the
    # convergence check
    nv_indices = []
    ni_indices = []
    nv_1 = len(circ.nodes_dict) - 1
    ni = n_of_var - nv_1
    for i in range(points):
        nv_indices += (i * mna.shape[0] * numpy.ones(nv_1) + \
                      numpy.arange(nv_1)).tolist()
        ni_indices += (i * mna.shape[0] * numpy.ones(ni) + \
                      numpy.arange(nv_1, n_of_var)).tolist()

    converged = False

    printing.print_info_line(("Solving... ", 3), verbose, print_nl=False)
    tick.reset()
    tick.display(verbose > 2)
    J = numpy.mat(numpy.zeros(CMAT.shape))
    T = numpy.mat(numpy.zeros((CMAT.shape[0], 1)))
    # td is a numpy matrix that will hold the damping factors
    td = numpy.mat(numpy.zeros((points, 1)))
    iteration = 0  # newton iteration counter

    while True:
        if iteration:  # the first time are already all zeros
            J[:, :] = 0
            T[:, 0] = 0
            td[:, 0] = 0
        for index in xrange(1, points):
            for elem in circ:
                # build all dT(xn)/dxn (stored in J) and T(x)
                if elem.is_nonlinear:
                    oports = elem.get_output_ports()
                    for opindex in range(len(oports)):
                        dports = elem.get_drive_ports(opindex)
                        v_ports = []
                        for dpindex in range(len(dports)):
                            dn1, dn2 = dports[dpindex]
                            v = 0  # build v: remember we trashed the 0 row and 0 col of mna -> -1
                            if dn1:
                                v = v + x[index * n_of_var + dn1 - 1, 0]
                            if dn2:
                                v = v - x[index * n_of_var + dn2 - 1, 0]
                            v_ports.append(v)
                        # all drive ports are ready.
                        n1, n2 = oports[opindex][0], oports[opindex][1]
                        if n1:
                            T[index * n_of_var + n1 - 1, 0] = T[index * n_of_var + n1 - 1, 0] + \
                                                              elem.i(opindex, v_ports)
                        if n2:
                            T[index * n_of_var + n2 - 1, 0] = T[index * n_of_var + n2 - 1, 0] - \
                                                              elem.i(opindex, v_ports)
                        for dpindex in range(len(dports)):
                            dn1, dn2 = dports[dpindex]
                            if n1:
                                if dn1:
                                    J[index * n_of_var + n1 - 1, index * n_of_var + dn1 - 1] = \
                                        J[index * n_of_var + n1 - 1, index * n_of_var + dn1 - 1] + \
                                            elem.g(opindex, v_ports, dpindex)
                                if dn2:
                                    J[index * n_of_var + n1 - 1, index * n_of_var + dn2 - 1] =\
                                        J[index * n_of_var + n1 - 1, index * n_of_var + dn2 - 1] - 1.0 * \
                                            elem.g(opindex, v_ports, dpindex)
                            if n2:
                                if dn1:
                                    J[index * n_of_var + n2 - 1, index * n_of_var + dn1 - 1] = \
                                        J[index * n_of_var + n2 - 1, index * n_of_var + dn1 - 1] - 1.0 * \
                                            elem.g(opindex, v_ports, dpindex)
                                if dn2:
                                    J[index * n_of_var + n2 - 1, index * n_of_var + dn2 - 1] =\
                                        J[index * n_of_var + n2 - 1, index * n_of_var + dn2 - 1] + \
                                            elem.g(opindex, v_ports, dpindex)

        J = J + CMAT
        residuo = CMAT * x + T + Tf + Tt
        dx = -1 * (numpy.linalg.inv(J) * residuo)
        # td
        for index in xrange(points):
            td[index, 0] = dc_analysis.get_td(dx[index * n_of_var:(index + 1) *
                                                 n_of_var, 0],
                                              locked_nodes,
                                              n=-1)
        x = x + min(abs(td))[0, 0] * dx
        # convergence check
        converged = convergence_check(dx, x, nv_indices, ni_indices,
                                      vector_norm)
        if converged:
            break
        tick.step(verbose > 2)

        if options.shooting_max_nr_iter and iteration == options.shooting_max_nr_iter:
            printing.print_general_error("Hitted SHOOTING_MAX_NR_ITER (" +
                                         str(options.shooting_max_nr_iter) +
                                         "), iteration halted.")
            converged = False
            break
        else:
            iteration = iteration + 1

    tick.hide(verbose > 2)
    if converged:
        printing.print_info_line(("done.", 3), verbose)
        t = numpy.mat(numpy.arange(points) * step)
        t = t.reshape((1, points))
        x = x.reshape((points, n_of_var))
        sol = results.pss_solution(circ=circ,
                                   method="brute-force",
                                   period=period,
                                   outfile=outfile,
                                   t_array=t,
                                   x_array=x.T)
    else:
        print "failed."
        sol = None
    return sol