def _getTimeSeries(self): if self.data_source == 'instagram': its = InstagramTimeSeries(self.region, self.data_backward, self.current_time) elif self.data_source == 'twitter': pass ts = its.buildTimeSeries() return ts
def run(): coordinates = [InstagramConfig.photo_min_lat, InstagramConfig.photo_min_lng, InstagramConfig.photo_max_lat, InstagramConfig.photo_max_lng ] huge_region = Region(coordinates) alarm_region_size = 25 regions = huge_region.divideRegions(alarm_region_size,alarm_region_size) filtered_regions = huge_region.filterRegions( regions) regions = filtered_regions test_cnt = 0 print 'all regions',len(regions) for region in regions: #delete the last 7*24*3600 to set it back to Dec 1st start_of_time = 1354320000 #+ 7*24*3600 end_of_time = 1354320000 + 7*24*3600 #+ 7*24*3600 series = InstagramTimeSeries( region, start_of_time, end_of_time) series = series.buildTimeSeries() region.display() for t in series.index: print t,',',series[t] print '\n'
def run(): coordinates = [ InstagramConfig.photo_min_lat, InstagramConfig.photo_min_lng, InstagramConfig.photo_max_lat, InstagramConfig.photo_max_lng ] huge_region = Region(coordinates) alarm_region_size = 25 regions = huge_region.divideRegions(alarm_region_size, alarm_region_size) filtered_regions = huge_region.filterRegions(regions) regions = filtered_regions test_cnt = 0 print 'all regions', len(regions) for region in regions: #delete the last 7*24*3600 to set it back to Dec 1st start_of_time = 1354320000 #+ 7*24*3600 end_of_time = 1354320000 + 7 * 24 * 3600 #+ 7*24*3600 series = InstagramTimeSeries(region, start_of_time, end_of_time) series = series.buildTimeSeries() region.display() for t in series.index: print t, ',', series[t] print '\n'
def _computeVariation(self): values = [0]*24 ts = InstagramTimeSeries(self.region, self.training_start_time, self.training_end_time) instagram_ts = ts.buildTimeSeries() M = np.zeros([1000,24]) initial_date = instagram_ts.index[0] for idx in instagram_ts.index: if not pd.isnull( instagram_ts[idx] ): day_dif = (idx - initial_date).days M[day_dif, idx.hour] = instagram_ts[idx] max_day = (instagram_ts.index[len(instagram_ts)-1] - initial_date ).days M = M[0:max_day, :] return np.mean(M, axis=0), np.std(M,axis=0)
def _computeVariation(self): values = [0] * 24 ts = InstagramTimeSeries(self.region, self.training_start_time, self.training_end_time) instagram_ts = ts.buildTimeSeries() M = np.zeros([1000, 24]) initial_date = instagram_ts.index[0] for idx in instagram_ts.index: if not pd.isnull(instagram_ts[idx]): day_dif = (idx - initial_date).days M[day_dif, idx.hour] = instagram_ts[idx] max_day = (instagram_ts.index[len(instagram_ts) - 1] - initial_date).days M = M[0:max_day, :] return np.mean(M, axis=0), np.std(M, axis=0)