def test_convert_is_date(self): current_date = date.today() current_date_converted = utility.convert(current_date) self.assertIsNotNone(current_date_converted) self.assertEquals( current_date_converted, str(current_date.year) + '-' + str(current_date.month).zfill(2) + '-' + str(current_date.day).zfill(2))
def convert_params_to_correct_types(params): converted_params = {} for key, val in params.items(): new_val = utility.convert(val) if type( new_val ) == str: # If param is a comma separated string, convert it to a list of the elements elements = new_val.split(",") if len(elements) > 1: new_val = [utility.convert(x) for x in elements] if new_val[ -1] == '': # One-element string (nothing after the comma) new_val = new_val[:-1] converted_params[key] = new_val return converted_params
def main(): ncolors = [256, 128, 64, 32, 16, 8, 4] #number of clusters bw = [1, 2, 5, 10, 15, 40] #bandwidth values img = Image() img.read_img( '/Users/davidclevenger/PycharmProjects/Pattern-Recognition/flowers120.ppm' ) orig = img.pix #k_means print 'kmeans' for i in ncolors: tmp = convert(kmeans(i, orig)) img.pix = tmp performance(i, orig, tmp) img.write_img( '/Users/davidclevenger/PycharmProjects/Pattern-Recognition/kmeans' + str(i) + '.ppm') #winner_take_all print 'winner_take_all' for i in ncolors: tmp = convert(winner_take_all(i, 0.1, orig)) img.pix = tmp performance(i, orig, tmp) img.write_img( '/Users/davidclevenger/PycharmProjects/Pattern-Recognition/wta' + str(i) + '.ppm') #mean_shift print 'mean_shift' for i in bw: tmp = convert(meanshift(i, orig)) img.pix = tmp performance(i, orig, tmp) img.write_img( '/Users/davidclevenger/PycharmProjects/Pattern-Recognition/ms' + str(i) + '.ppm') return 0
def p_type(p): '''type : BOOL | CHAR | BYTE | SHORT | INT | LONG | DOUBLE | FLOAT | ID ''' if not isType(p[1]): raise SyntaxError p[0] = convert(p[1])
def confusion_matrix(self, y_pred, y_real): for i in range(len(y_pred)): y_pred[i] = ut.convert(y_pred[i]) n = y_real.shape[1] m = np.array(n * [n * [0]]) for i in range(len(y_real)): if (y_real.values[i][0] == 1): m[0] += y_pred[i] elif (y_real.values[i][1] == 1): m[1] += y_pred[i] else: m[2] += y_pred[i] ut.plt_confusion_matrix(m) return m
def _sample(self, size, training, random_state): s = None temp = None if training: temp = self.train_df.drop(pd.DataFrame()) else: temp = self.test_df.drop(pd.DataFrame()) while len(temp) > 0: if len(temp) < size: s = temp.sample(len(temp), random_state=random_state) temp = temp.drop(s.index) s = utility.convert(s) yield utility.reform(s) else: s = temp.sample(size, random_state=random_state) temp = temp.drop(s.index) s = utility.convert(s) yield utility.reform(s)
def test_convert_is_none(self): non_date = "I am not a date." self.assertIsNone(utility.convert(non_date))
def p_acs(p): ''' acs : PRIVATE | PUBLIC | PROTECTED | ''' addToFile(text=convert(p[1]) + " ")