예제 #1
0
파일: plotting.py 프로젝트: dydcfg/Two_Step
def reaction_times_first_step(sessions):
    median_reaction_times = np.zeros([len(sessions),4])
    all_reaction_times = []
    for i,session in enumerate(sessions):
        event_times = ut.get_event_times(session.time_stamps, session.event_codes, session.IDs)
        ITI_start_times = event_times['ITI_start']
        center_poke_times = sorted(np.hstack((event_times['high_poke'], event_times['low_poke'])))
        reaction_times = 1000 * _latencies(ITI_start_times,  center_poke_times)[1:-1]
        all_reaction_times.append(reaction_times)
        transitions = (session.blocks['trial_trans_state'] == session.CTSO['transitions'])[:len(reaction_times)] # Transitions common/rare.
        outcomes = session.CTSO['outcomes'][:len(reaction_times)].astype(bool)
        median_reaction_times[i, 0] = np.median(reaction_times[ transitions &  outcomes])  # Common transition, rewarded.
        median_reaction_times[i, 1] = np.median(reaction_times[~transitions &  outcomes])  # Rare transition, rewarded.
        median_reaction_times[i, 2] = np.median(reaction_times[ transitions & ~outcomes])  # Common transition, non-rewarded.
        median_reaction_times[i, 3] = np.median(reaction_times[~transitions & ~outcomes])  # Rare transition, non-rewarded.
    mean_RTs = np.mean(median_reaction_times,0)
    SEM_RTs  = np.sqrt(np.var(median_reaction_times,0)/len(sessions))
    p.figure(1)
    p.clf()
    p.title('First step reaction times')
    p.bar([1,2,3,4], mean_RTs, yerr = SEM_RTs)
    p.ylim(min(mean_RTs) * 0.8, max(mean_RTs) * 1.1)
    p.xticks([1.4, 2.4, 3.4, 4.4], ['Com. Rew.', 'Rare Rew.', 'Com. Non.', 'Rare. Non.'])
    p.xlim(0.8,5)
    p.ylabel('Reaction time (ms)')
    all_reaction_times = np.hstack(all_reaction_times)
    bin_edges = np.arange(0,3001)
    rt_hist = np.histogram(all_reaction_times, bin_edges)[0]
    cum_rt_hist = np.cumsum(rt_hist) / float(len(all_reaction_times))
    p.figure(2)
    p.clf()
    p.plot(bin_edges[:-1],cum_rt_hist)
    p.ylim(0,1)
    p.xlabel('Time from ITI start (ms)')
    p.ylabel('Cumumative fraction of first central pokes.')
예제 #2
0
파일: plotting.py 프로젝트: dydcfg/Two_Step
def reaction_times_second_step(sessions, fig_no = 1):
    'Reaction times for second step pokes as function of common / rare transition.'
    sec_step_IDs = ut.get_IDs(sessions[0].IDs, ['right_active', 'left_active'])
    median_RTs_common = np.zeros(len(sessions))
    median_RTs_rare   = np.zeros(len(sessions))
    for i,session in enumerate(sessions):
        event_times = ut.get_event_times(session.time_stamps, session.event_codes, session.IDs)
        left_active_times = event_times['left_active']
        right_active_times = event_times['right_active']
        left_reaction_times  = _latencies(left_active_times,  event_times['left_poke'])
        right_reaction_times = _latencies(right_active_times, event_times['right_poke'])
        ordered_reaction_times = np.hstack((left_reaction_times,right_reaction_times))\
                                 [np.argsort(np.hstack((left_active_times,right_active_times)))]
        transitions = session.blocks['trial_trans_state'] == session.CTSO['transitions']  # common vs rare.                 
        median_RTs_common[i] = np.median(ordered_reaction_times[ transitions])
        median_RTs_rare[i]    = np.median(ordered_reaction_times[~transitions])
    mean_RT_common = 1000 * np.mean(median_RTs_common)
    mean_RT_rare   = 1000 * np.mean(median_RTs_rare)
    SEM_RT_common = 1000 * np.sqrt(np.var(median_RTs_common/len(sessions)))
    SEM_RT_rare   = 1000 * np.sqrt(np.var(median_RTs_rare  /len(sessions)))
    p.figure(fig_no)
    p.bar([1,2],[mean_RT_common, mean_RT_rare], yerr = [SEM_RT_common,SEM_RT_rare])
    p.xlim(0.8,3)
    p.ylim(mean_RT_common * 0.8, mean_RT_rare * 1.1)
    p.xticks([1.4, 2.4], ['Common', 'Rare'])
    p.title('Second step reaction times')
    p.ylabel('Reaction time (ms)')
    print('Paired t-test P value: {}'.format(ttest_rel(median_RTs_common, median_RTs_rare)[1]))