date) download_file(path, file_name, date_range, folder) if checksum == 1: checksum_path = "data/spot/daily/klines/{}/{}/".format( symbol.upper(), interval) checksum_file_name = "{}-{}-{}.zip.CHECKSUM".format( symbol.upper(), interval, date) download_file(checksum_path, checksum_file_name, date_range, folder) current += 1 if __name__ == "__main__": parser = get_parser('klines') args = parser.parse_args(sys.argv[1:]) if not args.symbols: print("fetching all symbols from exchange") symbols = get_all_symbols() num_symbols = len(symbols) else: symbols = args.symbols num_symbols = len(symbols) if args.dates: dates = args.dates else: dates = pd.date_range(end=datetime.today(), periods=MAX_DAYS).to_pydatetime().tolist()
file_name = "{}-trades-{}.zip".format(symbol.upper(), date) download_file(path, file_name, date_range, folder) if checksum == 1: checksum_path = "data/spot/daily/trades/{}/".format( symbol.upper()) checksum_file_name = "{}-trades-{}.zip.CHECKSUM".format( symbol.upper(), date) download_file(checksum_path, checksum_file_name, date_range, folder) current += 1 if __name__ == "__main__": parser = get_parser('trades') args = parser.parse_args(sys.argv[1:]) if not args.symbols: print("fetching all symbols from exchange") symbols = get_all_symbols() num_symbols = len(symbols) else: symbols = args.symbols num_symbols = len(symbols) print("fetching {} symbols from exchange".format(num_symbols)) if args.dates: dates = args.dates else: dates = pd.date_range(end=datetime.today(),
from sklearn.cluster import MiniBatchKMeans from skimage.io import imread from sklearn.externals import joblib import pickle import utility import numpy as np from sklearn.utils.random import sample_without_replacement from sklearn.model_selection import train_test_split args = utility.get_parser().parse_args() DATASET = args.data NUM_PIXELS = args.num_pixels SINGLE_CLUSTERS = args.single_clusters DOUBLE_CLUSTERS = args.double_clusters image_paths, _ = utility.read_data(DATASET) image_paths, _ = train_test_split(image_paths, test_size = 1500, random_state = 42) kmeans_single = MiniBatchKMeans(n_clusters = SINGLE_CLUSTERS) kmeans_double = MiniBatchKMeans(n_clusters = DOUBLE_CLUSTERS) pca = joblib.load('resources/pca.pkl') with open('resources/bounds.pkl', 'rb') as f: bounds = pickle.load(f) batch = np.zeros((NUM_PIXELS, 3)) for i, img in enumerate(image_paths): image = imread(img) dx, dy, dz = image.shape
path = "data/spot/daily/aggTrades/{}/".format(symbol.upper()) file_name = "{}-aggTrades-{}.zip".format(symbol.upper(), date) download_file(path, file_name) if checksum == 1: checksum_path = "data/spot/daily/aggTrades/{}/".format( symbol.upper()) checksum_file_name = "{}-aggTrades-{}.zip.CHECKSUM".format( symbol.upper(), date) download_file(checksum_path, checksum_file_name) current += 1 if __name__ == "__main__": parser = get_parser('aggTrades') args = parser.parse_args(sys.argv[1:]) if not args.symbols: print("fetching all symbols from exchange") symbols = get_all_symbols() num_symbols = len(symbols) else: symbols = args.symbols num_symbols = len(symbols) print("fetching {} symbols from exchange".format(num_symbols)) if args.dates: dates = args.dates else: dates = pd.date_range(end=datetime.today(),