def main(): cluster_rows = dict() for i in range(10): filereader = FileReader(f"./full_tweets/cluster_{i}.csv") cluster_rows[i] = filereader.get_rows() with codecs.open("cluster_rows.csv", "w+") as o: o.write("Cluster Number" + "," + "User Name" + "," + "user_id\t" + "," + "No of Tweets\t\t" + "," + "Tweet_id\t" + "," "Retweet Count\t" + "," + "Inf Score\t" + "," + "Tweet\n") for key, value in cluster_rows.items(): lines = "" for v in value: line = str(key) line += "," line += ",".join(v) line += "\n" lines += line o.write(lines)
def get_starter_template(): # Init filereader = FileReader() weaponsdict = [] weapons_read = [] weapons = [] information_number = 4 * 2 # Scan Dir for Weapon Files files = [f for f in os.listdir("./") if isfile(join("./", f))] files.remove("WeaponTemplates.py") # Append File Content for i in range(len(files)): weapons_read.append( filereader.line(os.path.dirname(__file__) + "/" + files[i])) # Write Data to List for i in weapons_read: for _i in i: item = _i.split("=") for _item in item: _item = _item.strip(' ') if "??" in item: _item.replace("??", "100") weapons.append(_item) # Convert List to Dict weapon = [] for item in weapons: weapon.append(item) if len(weapon) % information_number == 0: weaponsdict.append(Functions.list_to_dict(weapon)) del weapon # Return Result return weaponsdict
def main(): os.chdir("../step_9") reader = FileReader("step_9_output_inf_user_tweets.csv") user_n_tweets = reader.rows dict_of_users = RowSeperater(user_n_tweets).seperate_rows() tweet_dump = [] dict_of_id_words = {} for key, value in dict_of_users.items(): for k, v in value.items(): words_list = TweetNormalizer(v).words words_list = StopWordsRemover(words_list).reduced_words stemmed_words = WordStemmer(words_list).implement_stemming() lem_words = WordLemmatizer(stemmed_words).implement_lemmatizing() lem_words = list(set(lem_words)) dict_of_id_words[k] = lem_words tweet_dump += lem_words tweet_dump = list(set(tweet_dump)) # print(len(tweet_dump)) pprint(dict_of_id_words)
from Day2.InventorySystem import InventorySystem from utils.FileReader import FileReader list_of_ids = FileReader.read('../sources/day2.txt') system = InventorySystem(list_of_ids) print('Checksum : ', system.checksum()) print('Common letters : ', system.find_boxes_common_letters())
from Day1.Chronal_Calibration import Device from utils.FileReader import FileReader sequence = FileReader.read('../sources/day1.txt') device = Device() device.calibrate(sequence) print('Final frequency state :', device.final_frequency) print('Frequency that occured twice :', device.frequency)
def test_read_should_return_array_of_lines(self, mock): lines = FileReader.read('./path/to/file.txt') assert lines == ['line1', 'line2']
from Day3.Claim import Claim from Day3.Diplomat import Diplomat from utils.FileReader import FileReader list_of_claims_scheme = FileReader.read('../sources/day3.txt') list_of_claims = [Claim.parse(claim) for claim in list_of_claims_scheme] diplomate = Diplomat(list_of_claims) print(diplomate.number_of_conflicts())
def create_training_data(self): # reading Porosity porosityMatrices = FileReader.read("data/" + self.attributes_files[0], 20) self.x_size, self.y_size = porosityMatrices[0].shape x = porosityMatrices[0].flatten() y = porosityMatrices[1].flatten() porosity = porosityMatrices[2].flatten() col = porosityMatrices[3].flatten() row = porosityMatrices[4].flatten() # reading Porosity-effective porosityEffectiveMatrix = FileReader.read( "data/" + self.attributes_files[1], 20) porosity_effective = porosityEffectiveMatrix[2].flatten() # reading ntglinear_model, ntgMatrix = FileReader.read("data/" + self.attributes_files[2], 20) ntg = ntgMatrix[2].flatten() # reading sw_base swBaseMatrix = FileReader.read("data/" + self.attributes_files[3], 20) sw_base = swBaseMatrix[2].flatten() # reading sg_base sgBaseMatrix = FileReader.read("data/" + self.attributes_files[4], 20) sg_base = sgBaseMatrix[2].flatten() # reading dsg dsgMatrix = FileReader.read("data/" + self.attributes_files[5], 20) dsg = dsgMatrix[2].flatten() # reading dsw dswMatrix = FileReader.read("data/" + self.attributes_files[6], 20) dsw = dswMatrix[2].flatten() # reading actual dRMS fair_int_dRMSMatrix_10m = FileReader.read( "data/" + self.attributes_files[7], 20) xdRMS = fair_int_dRMSMatrix_10m[0].flatten() ydRMS = fair_int_dRMSMatrix_10m[1].flatten() fair_int_dRMS_10m = fair_int_dRMSMatrix_10m[2].flatten() # reading actual dRMS fair_int_dRMSMatrix_20m = FileReader.read( "data/" + self.attributes_files[8], 20) xdRMS = fair_int_dRMSMatrix_20m[0].flatten() ydRMS = fair_int_dRMSMatrix_20m[1].flatten() fair_int_dRMS_20m = fair_int_dRMSMatrix_20m[2].flatten() # reading synthetic dRMS fair_int_dRMSMatrix = FileReader.read( "data/" + self.attributes_files[9], 20) xdRMS = fair_int_dRMSMatrix[0].flatten() ydRMS = fair_int_dRMSMatrix[1].flatten() fair_int_dRMS = fair_int_dRMSMatrix[2].flatten() for i in range(len(x)): if math.isnan(x[i]) or math.isnan(y[i]) or math.isnan( dsg[i]) or math.isnan(dsw[i]) or math.isnan( xdRMS[i]) or math.isnan(ydRMS[i]) or math.isnan( fair_int_dRMS_10m[i]) or math.isnan( fair_int_dRMS_20m[i]) or math.isnan( fair_int_dRMS[i]): #nothing print("") else: self.x.append(x[i]) self.y.append(y[i]) self.porosity.append(porosity[i]) self.porosity_effective.append(porosity_effective[i]) self.col.append(col[i]) self.row.append(row[i]) self.ntg.append(ntg[i]) self.sw_base.append(sw_base[i]) self.sg_base.append(sg_base[i]) self.dsg.append(dsg[i]) self.dsw.append(dsw[i]) self.xdRMS.append(xdRMS[i]) self.ydRMS.append(ydRMS[i]) self.fair_int_dRMS_10m.append(fair_int_dRMS_10m[i]) self.fair_int_dRMS_20m.append(fair_int_dRMS_20m[i]) self.fair_int_dRMS.append(fair_int_dRMS[i])