예제 #1
0
def evaluate(net, cfg):
    dataset = COCODetection(cfg, mode='val')
    data_loader = data.DataLoader(dataset,
                                  1,
                                  num_workers=4,
                                  shuffle=False,
                                  pin_memory=True,
                                  collate_fn=val_collate)
    ds = len(data_loader)
    progress_bar = ProgressBar(40, ds)
    timer.reset()

    ap_data = {
        'box':
        [[APDataObject() for _ in cfg.class_names] for _ in iou_thresholds],
        'mask':
        [[APDataObject() for _ in cfg.class_names] for _ in iou_thresholds]
    }

    with torch.no_grad():
        for i, (img, gt, gt_masks, num_crowd, height,
                width) in enumerate(data_loader):
            if i == 1:
                timer.start()

            if cuda:
                img, gt, gt_masks = img.cuda(), gt.cuda(), gt_masks.cuda()

            with timer.counter('forward'):
                net_outs = net(img)

            with timer.counter('nms'):
                nms_outs = nms(cfg, net_outs)

            with timer.counter('after_nms'):
                classes_p, confs_p, boxes_p, masks_p = after_nms(
                    nms_outs, height, width)
                if classes_p.size(0) == 0:
                    continue

            with timer.counter('metric'):
                classes_p = list(classes_p.cpu().numpy().astype(int))
                confs_p = list(confs_p.cpu().numpy().astype(float))

                if cfg.coco_api:
                    boxes_p = boxes_p.cpu().numpy()
                    masks_p = masks_p.cpu().numpy()

                    for j in range(masks_p.shape[0]):
                        if (boxes_p[j, 3] - boxes_p[j, 1]) * (
                                boxes_p[j, 2] - boxes_p[j, 0]) > 0:
                            make_json.add_bbox(dataset.ids[i], classes_p[j],
                                               boxes_p[j, :], confs_p[j])
                            make_json.add_mask(dataset.ids[i], classes_p[j],
                                               masks_p[j, :, :], confs_p[j])
                else:
                    prep_metrics(ap_data, classes_p, confs_p, boxes_p, masks_p,
                                 gt, gt_masks, num_crowd, height, width)

            aa = time.perf_counter()
            if i > 0:
                batch_time = aa - temp
                timer.add_batch_time(batch_time)
            temp = aa

            if i > 0:
                t_t, t_d, t_f, t_nms, t_an, t_me = timer.get_times(
                    ['batch', 'data', 'forward', 'nms', 'after_nms', 'metric'])
                fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t
                bar_str = progress_bar.get_bar(i + 1)
                print(
                    f'\rTesting: {bar_str} {i + 1}/{ds}, fps: {fps:.2f} | total fps: {t_fps:.2f} | '
                    f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | '
                    f't_after_nms: {t_an:.3f} | t_metric: {t_me:.3f}',
                    end='')

        if cfg.coco_api:
            make_json.dump()
            print(
                f'\nJson files dumped, saved in: \'results/\', start evaluting.'
            )

            gt_annotations = COCO(cfg.val_ann)
            bbox_dets = gt_annotations.loadRes(f'results/bbox_detections.json')
            mask_dets = gt_annotations.loadRes(f'results/mask_detections.json')

            print('\nEvaluating BBoxes:')
            bbox_eval = COCOeval(gt_annotations, bbox_dets, 'bbox')
            bbox_eval.evaluate()
            bbox_eval.accumulate()
            bbox_eval.summarize()

            print('\nEvaluating Masks:')
            bbox_eval = COCOeval(gt_annotations, mask_dets, 'segm')
            bbox_eval.evaluate()
            bbox_eval.accumulate()
            bbox_eval.summarize()
        else:
            table, box_row, mask_row = calc_map(ap_data, cfg)
            print(table)
            return table, box_row, mask_row
예제 #2
0
def main():
    parser = argparse.ArgumentParser(description='YOLACT Detection.')
    parser.add_argument('--weight', default='weights/best_30.5_res101_coco_392000.pth', type=str)
    parser.add_argument('--image', default=None, type=str, help='The folder of images for detecting.')
    parser.add_argument('--video', default=None, type=str, help='The path of the video to evaluate.')
    parser.add_argument('--img_size', type=int, default=544, help='The image size for validation.')
    parser.add_argument('--traditional_nms', default=False, action='store_true', help='Whether to use traditional nms.')
    parser.add_argument('--hide_mask', default=False, action='store_true', help='Hide masks in results.')
    parser.add_argument('--hide_bbox', default=False, action='store_true', help='Hide boxes in results.')
    parser.add_argument('--hide_score', default=False, action='store_true', help='Hide scores in results.')
    parser.add_argument('--cutout', default=False, action='store_true', help='Cut out each object and save.')
    parser.add_argument('--save_lincomb', default=False, action='store_true', help='Show the generating process of masks.')
    parser.add_argument('--no_crop', default=False, action='store_true',
                        help='Do not crop the output masks with the predicted bounding box.')
    parser.add_argument('--real_time', default=False, action='store_true', help='Show the detection results real-timely.')
    parser.add_argument('--visual_thre', default=0.3, type=float,
                        help='Detections with a score under this threshold will be removed.')

    args = parser.parse_args()
    prefix = re.findall(r'best_\d+\.\d+_', args.weight)[0]
    suffix = re.findall(r'_\d+\.pth', args.weight)[0]
    args.cfg = args.weight.split(prefix)[-1].split(suffix)[0]
    cfg = get_config(args, mode='detect')

    net = Yolact(cfg)
    net.load_weights(cfg.weight, cfg.cuda)
    net.eval()

    if cfg.cuda:
        cudnn.benchmark = True
        cudnn.fastest = True
        net = net.cuda()

    # detect images
    if cfg.image is not None:
        dataset = COCODetection(cfg, mode='detect')
        data_loader = data.DataLoader(dataset, 1, num_workers=2, shuffle=False, pin_memory=True, collate_fn=detect_collate)
        ds = len(data_loader)
        assert ds > 0, 'No .jpg images found.'
        progress_bar = ProgressBar(40, ds)
        timer.reset()

        for i, (img, img_origin, img_name) in enumerate(data_loader):
            if i == 1:
                timer.start()

            if cfg.cuda:
                img = img.cuda()

            img_h, img_w = img_origin.shape[0:2]

            with torch.no_grad(), timer.counter('forward'):
                class_p, box_p, coef_p, proto_p = net(img)

            with timer.counter('nms'):
                ids_p, class_p, box_p, coef_p, proto_p = nms(class_p, box_p, coef_p, proto_p, net.anchors, cfg)

            with timer.counter('after_nms'):
                ids_p, class_p, boxes_p, masks_p = after_nms(ids_p, class_p, box_p, coef_p, proto_p,
                                                            img_h, img_w, cfg, img_name=img_name)

            with timer.counter('save_img'):
                img_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, img_origin, cfg, img_name=img_name)
                cv2.imwrite(f'results/images/{img_name}', img_numpy)

            aa = time.perf_counter()
            if i > 0:
                batch_time = aa - temp
                timer.add_batch_time(batch_time)
            temp = aa

            if i > 0:
                t_t, t_d, t_f, t_nms, t_an, t_si = timer.get_times(['batch', 'data', 'forward',
                                                                    'nms', 'after_nms', 'save_img'])
                fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t
                bar_str = progress_bar.get_bar(i + 1)
                print(f'\rTesting: {bar_str} {i + 1}/{ds}, fps: {fps:.2f} | total fps: {t_fps:.2f} | '
                    f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | '
                    f't_after_nms: {t_an:.3f} | t_save_img: {t_si:.3f}', end='')

        print('\nFinished, saved in: results/images.')

    # detect videos
    elif cfg.video is not None:
        vid = cv2.VideoCapture(cfg.video)

        target_fps = round(vid.get(cv2.CAP_PROP_FPS))
        frame_width = round(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = round(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
        num_frames = round(vid.get(cv2.CAP_PROP_FRAME_COUNT))

        name = cfg.video.split('/')[-1]
        video_writer = cv2.VideoWriter(f'results/videos/{name}', cv2.VideoWriter_fourcc(*"mp4v"), target_fps,
                                    (frame_width, frame_height))

        progress_bar = ProgressBar(40, num_frames)
        timer.reset()
        t_fps = 0

        for i in range(num_frames):
            if i == 1:
                timer.start()

            frame_origin = vid.read()[1]
            img_h, img_w = frame_origin.shape[0:2]
            frame_trans = val_aug(frame_origin, cfg.img_size)

            frame_tensor = torch.tensor(frame_trans).float()
            if cfg.cuda:
                frame_tensor = frame_tensor.cuda()

            with torch.no_grad(), timer.counter('forward'):
                class_p, box_p, coef_p, proto_p = net(frame_tensor.unsqueeze(0))

            with timer.counter('nms'):
                ids_p, class_p, box_p, coef_p, proto_p = nms(class_p, box_p, coef_p, proto_p, net.anchors, cfg)

            with timer.counter('after_nms'):
                ids_p, class_p, boxes_p, masks_p = after_nms(ids_p, class_p, box_p, coef_p, proto_p, img_h, img_w, cfg)

            with timer.counter('save_img'):
                frame_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, frame_origin, cfg, fps=t_fps)

            if cfg.real_time:
                cv2.imshow('Detection', frame_numpy)
                cv2.waitKey(1)
            else:
                video_writer.write(frame_numpy)

            aa = time.perf_counter()
            if i > 0:
                batch_time = aa - temp
                timer.add_batch_time(batch_time)
            temp = aa

            if i > 0:
                t_t, t_d, t_f, t_nms, t_an, t_si = timer.get_times(['batch', 'data', 'forward',
                                                                    'nms', 'after_nms', 'save_img'])
                fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t
                bar_str = progress_bar.get_bar(i + 1)
                print(f'\rDetecting: {bar_str} {i + 1}/{num_frames}, fps: {fps:.2f} | total fps: {t_fps:.2f} | '
                    f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | '
                    f't_after_nms: {t_an:.3f} | t_save_img: {t_si:.3f}', end='')

        if not cfg.real_time:
            print(f'\n\nFinished, saved in: results/videos/{name}')

        vid.release()
        video_writer.release()
예제 #3
0
if args.resume == 'latest':
    weight = glob.glob('weights/latest*')[0]
    net.load_weights(weight, cuda)
    start_step = int(weight.split('.pth')[0].split('_')[-1])
    print(f'\nResume training with \'{weight}\'.\n')
elif args.resume and 'yolact' in args.resume:
    net.load_weights(cfg.weight, cuda)
    start_step = int(cfg.weight.split('.pth')[0].split('_')[-1])
    print(f'\nResume training with \'{args.resume}\'.\n')
else:
    net.init_weights(cfg.weight)
    print(
        f'\nTraining from begining, weights initialized with {cfg.weight}.\n')
    start_step = 0

dataset = COCODetection(cfg, mode='train')
train_sampler = None
main_gpu = False
if cuda:
    cudnn.benchmark = True
    cudnn.fastest = True
    main_gpu = dist.get_rank() == 0
    num_gpu = dist.get_world_size()

    net_with_loss = NetWithLoss(net, criterion)
    net = DDP(net_with_loss.cuda(), [args.local_rank],
              output_device=args.local_rank,
              broadcast_buffers=True)
    train_sampler = DistributedSampler(dataset, shuffle=True)

# shuffle must be False if sampler is specified
예제 #4
0
        # Append the device buffer to device bindings.
        bindings.append(int(device_mem))

        if engine.binding_is_input(binding):
            inputs.append(HostDeviceMem(host_mem, device_mem))
        else:
            outputs.append(HostDeviceMem(host_mem, device_mem))

# ------------------------------------------------------------------------------------------------------------
# Since also the inference procedure are done on GPU, so any other CUDA relevant operation should be excluded,
# e.g. CUDA operation in PyTorch, or some unexpected error may occur.
# ------------------------------------------------------------------------------------------------------------

# detect images
if cfg.image is not None:
    dataset = COCODetection(cfg, mode='detect')
    # Only num_workers=0 and pin_memory=True or num_workers>0 and pin_memory=False is OK, if use num_workers>0
    # and pin_memory=True, encounter error:
    # PyCUDA WARNING: a clean-up operation failed (dead context maybe?)
    # cuMemFreeHost failed: context is destroyed
    data_loader = data.DataLoader(dataset,
                                  1,
                                  num_workers=4,
                                  shuffle=False,
                                  pin_memory=False,
                                  collate_fn=detect_onnx_collate)

    ds = len(data_loader)
    assert ds > 0, 'No .jpg images found.'
    progress_bar = ProgressBar(40, ds)
    timer.reset()
예제 #5
0
    for i, COCOID in enumerate(ids_p):
        data.append({"id": COCO_CLASSES[COCOID],
                "score": str(class_p[i]),
                "bbox": box_p[i].tolist()})

    json.dump(data, f)
    print(f'{f.name} created.')
    f.close()


if __name__ == "__main__":
    with torch.no_grad():
        # detect the image
        if cfg.image is not None:
            # 待识别图片
            dataset = COCODetection(cfg, mode='detect')  # Map-Style dataset
            data_loader = data.DataLoader(dataset, 1, num_workers=0, shuffle=False,
                                          pin_memory=True, collate_fn=detect_collate)

            startTime = time.perf_counter()
            # img是被正规化的550 * 550图片,img_origin是从cv2中读取的BGR图片
            for i, (img, img_origin, img_name) in enumerate(data_loader):

                if cfg.cuda:
                    img = img.cuda()

                img_name = img_name.split('.')[0]  # only save the filename
                print("the {} image : {}".format(i, img_name))
                print("img size:", img.shape)
                img_h, img_w = img_origin.shape[0:2]