def evaluate(net, cfg): dataset = COCODetection(cfg, mode='val') data_loader = data.DataLoader(dataset, 1, num_workers=4, shuffle=False, pin_memory=True, collate_fn=val_collate) ds = len(data_loader) progress_bar = ProgressBar(40, ds) timer.reset() ap_data = { 'box': [[APDataObject() for _ in cfg.class_names] for _ in iou_thresholds], 'mask': [[APDataObject() for _ in cfg.class_names] for _ in iou_thresholds] } with torch.no_grad(): for i, (img, gt, gt_masks, num_crowd, height, width) in enumerate(data_loader): if i == 1: timer.start() if cuda: img, gt, gt_masks = img.cuda(), gt.cuda(), gt_masks.cuda() with timer.counter('forward'): net_outs = net(img) with timer.counter('nms'): nms_outs = nms(cfg, net_outs) with timer.counter('after_nms'): classes_p, confs_p, boxes_p, masks_p = after_nms( nms_outs, height, width) if classes_p.size(0) == 0: continue with timer.counter('metric'): classes_p = list(classes_p.cpu().numpy().astype(int)) confs_p = list(confs_p.cpu().numpy().astype(float)) if cfg.coco_api: boxes_p = boxes_p.cpu().numpy() masks_p = masks_p.cpu().numpy() for j in range(masks_p.shape[0]): if (boxes_p[j, 3] - boxes_p[j, 1]) * ( boxes_p[j, 2] - boxes_p[j, 0]) > 0: make_json.add_bbox(dataset.ids[i], classes_p[j], boxes_p[j, :], confs_p[j]) make_json.add_mask(dataset.ids[i], classes_p[j], masks_p[j, :, :], confs_p[j]) else: prep_metrics(ap_data, classes_p, confs_p, boxes_p, masks_p, gt, gt_masks, num_crowd, height, width) aa = time.perf_counter() if i > 0: batch_time = aa - temp timer.add_batch_time(batch_time) temp = aa if i > 0: t_t, t_d, t_f, t_nms, t_an, t_me = timer.get_times( ['batch', 'data', 'forward', 'nms', 'after_nms', 'metric']) fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t bar_str = progress_bar.get_bar(i + 1) print( f'\rTesting: {bar_str} {i + 1}/{ds}, fps: {fps:.2f} | total fps: {t_fps:.2f} | ' f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | ' f't_after_nms: {t_an:.3f} | t_metric: {t_me:.3f}', end='') if cfg.coco_api: make_json.dump() print( f'\nJson files dumped, saved in: \'results/\', start evaluting.' ) gt_annotations = COCO(cfg.val_ann) bbox_dets = gt_annotations.loadRes(f'results/bbox_detections.json') mask_dets = gt_annotations.loadRes(f'results/mask_detections.json') print('\nEvaluating BBoxes:') bbox_eval = COCOeval(gt_annotations, bbox_dets, 'bbox') bbox_eval.evaluate() bbox_eval.accumulate() bbox_eval.summarize() print('\nEvaluating Masks:') bbox_eval = COCOeval(gt_annotations, mask_dets, 'segm') bbox_eval.evaluate() bbox_eval.accumulate() bbox_eval.summarize() else: table, box_row, mask_row = calc_map(ap_data, cfg) print(table) return table, box_row, mask_row
def main(): parser = argparse.ArgumentParser(description='YOLACT Detection.') parser.add_argument('--weight', default='weights/best_30.5_res101_coco_392000.pth', type=str) parser.add_argument('--image', default=None, type=str, help='The folder of images for detecting.') parser.add_argument('--video', default=None, type=str, help='The path of the video to evaluate.') parser.add_argument('--img_size', type=int, default=544, help='The image size for validation.') parser.add_argument('--traditional_nms', default=False, action='store_true', help='Whether to use traditional nms.') parser.add_argument('--hide_mask', default=False, action='store_true', help='Hide masks in results.') parser.add_argument('--hide_bbox', default=False, action='store_true', help='Hide boxes in results.') parser.add_argument('--hide_score', default=False, action='store_true', help='Hide scores in results.') parser.add_argument('--cutout', default=False, action='store_true', help='Cut out each object and save.') parser.add_argument('--save_lincomb', default=False, action='store_true', help='Show the generating process of masks.') parser.add_argument('--no_crop', default=False, action='store_true', help='Do not crop the output masks with the predicted bounding box.') parser.add_argument('--real_time', default=False, action='store_true', help='Show the detection results real-timely.') parser.add_argument('--visual_thre', default=0.3, type=float, help='Detections with a score under this threshold will be removed.') args = parser.parse_args() prefix = re.findall(r'best_\d+\.\d+_', args.weight)[0] suffix = re.findall(r'_\d+\.pth', args.weight)[0] args.cfg = args.weight.split(prefix)[-1].split(suffix)[0] cfg = get_config(args, mode='detect') net = Yolact(cfg) net.load_weights(cfg.weight, cfg.cuda) net.eval() if cfg.cuda: cudnn.benchmark = True cudnn.fastest = True net = net.cuda() # detect images if cfg.image is not None: dataset = COCODetection(cfg, mode='detect') data_loader = data.DataLoader(dataset, 1, num_workers=2, shuffle=False, pin_memory=True, collate_fn=detect_collate) ds = len(data_loader) assert ds > 0, 'No .jpg images found.' progress_bar = ProgressBar(40, ds) timer.reset() for i, (img, img_origin, img_name) in enumerate(data_loader): if i == 1: timer.start() if cfg.cuda: img = img.cuda() img_h, img_w = img_origin.shape[0:2] with torch.no_grad(), timer.counter('forward'): class_p, box_p, coef_p, proto_p = net(img) with timer.counter('nms'): ids_p, class_p, box_p, coef_p, proto_p = nms(class_p, box_p, coef_p, proto_p, net.anchors, cfg) with timer.counter('after_nms'): ids_p, class_p, boxes_p, masks_p = after_nms(ids_p, class_p, box_p, coef_p, proto_p, img_h, img_w, cfg, img_name=img_name) with timer.counter('save_img'): img_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, img_origin, cfg, img_name=img_name) cv2.imwrite(f'results/images/{img_name}', img_numpy) aa = time.perf_counter() if i > 0: batch_time = aa - temp timer.add_batch_time(batch_time) temp = aa if i > 0: t_t, t_d, t_f, t_nms, t_an, t_si = timer.get_times(['batch', 'data', 'forward', 'nms', 'after_nms', 'save_img']) fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t bar_str = progress_bar.get_bar(i + 1) print(f'\rTesting: {bar_str} {i + 1}/{ds}, fps: {fps:.2f} | total fps: {t_fps:.2f} | ' f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | ' f't_after_nms: {t_an:.3f} | t_save_img: {t_si:.3f}', end='') print('\nFinished, saved in: results/images.') # detect videos elif cfg.video is not None: vid = cv2.VideoCapture(cfg.video) target_fps = round(vid.get(cv2.CAP_PROP_FPS)) frame_width = round(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = round(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) num_frames = round(vid.get(cv2.CAP_PROP_FRAME_COUNT)) name = cfg.video.split('/')[-1] video_writer = cv2.VideoWriter(f'results/videos/{name}', cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (frame_width, frame_height)) progress_bar = ProgressBar(40, num_frames) timer.reset() t_fps = 0 for i in range(num_frames): if i == 1: timer.start() frame_origin = vid.read()[1] img_h, img_w = frame_origin.shape[0:2] frame_trans = val_aug(frame_origin, cfg.img_size) frame_tensor = torch.tensor(frame_trans).float() if cfg.cuda: frame_tensor = frame_tensor.cuda() with torch.no_grad(), timer.counter('forward'): class_p, box_p, coef_p, proto_p = net(frame_tensor.unsqueeze(0)) with timer.counter('nms'): ids_p, class_p, box_p, coef_p, proto_p = nms(class_p, box_p, coef_p, proto_p, net.anchors, cfg) with timer.counter('after_nms'): ids_p, class_p, boxes_p, masks_p = after_nms(ids_p, class_p, box_p, coef_p, proto_p, img_h, img_w, cfg) with timer.counter('save_img'): frame_numpy = draw_img(ids_p, class_p, boxes_p, masks_p, frame_origin, cfg, fps=t_fps) if cfg.real_time: cv2.imshow('Detection', frame_numpy) cv2.waitKey(1) else: video_writer.write(frame_numpy) aa = time.perf_counter() if i > 0: batch_time = aa - temp timer.add_batch_time(batch_time) temp = aa if i > 0: t_t, t_d, t_f, t_nms, t_an, t_si = timer.get_times(['batch', 'data', 'forward', 'nms', 'after_nms', 'save_img']) fps, t_fps = 1 / (t_d + t_f + t_nms + t_an), 1 / t_t bar_str = progress_bar.get_bar(i + 1) print(f'\rDetecting: {bar_str} {i + 1}/{num_frames}, fps: {fps:.2f} | total fps: {t_fps:.2f} | ' f't_t: {t_t:.3f} | t_d: {t_d:.3f} | t_f: {t_f:.3f} | t_nms: {t_nms:.3f} | ' f't_after_nms: {t_an:.3f} | t_save_img: {t_si:.3f}', end='') if not cfg.real_time: print(f'\n\nFinished, saved in: results/videos/{name}') vid.release() video_writer.release()
if args.resume == 'latest': weight = glob.glob('weights/latest*')[0] net.load_weights(weight, cuda) start_step = int(weight.split('.pth')[0].split('_')[-1]) print(f'\nResume training with \'{weight}\'.\n') elif args.resume and 'yolact' in args.resume: net.load_weights(cfg.weight, cuda) start_step = int(cfg.weight.split('.pth')[0].split('_')[-1]) print(f'\nResume training with \'{args.resume}\'.\n') else: net.init_weights(cfg.weight) print( f'\nTraining from begining, weights initialized with {cfg.weight}.\n') start_step = 0 dataset = COCODetection(cfg, mode='train') train_sampler = None main_gpu = False if cuda: cudnn.benchmark = True cudnn.fastest = True main_gpu = dist.get_rank() == 0 num_gpu = dist.get_world_size() net_with_loss = NetWithLoss(net, criterion) net = DDP(net_with_loss.cuda(), [args.local_rank], output_device=args.local_rank, broadcast_buffers=True) train_sampler = DistributedSampler(dataset, shuffle=True) # shuffle must be False if sampler is specified
# Append the device buffer to device bindings. bindings.append(int(device_mem)) if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) # ------------------------------------------------------------------------------------------------------------ # Since also the inference procedure are done on GPU, so any other CUDA relevant operation should be excluded, # e.g. CUDA operation in PyTorch, or some unexpected error may occur. # ------------------------------------------------------------------------------------------------------------ # detect images if cfg.image is not None: dataset = COCODetection(cfg, mode='detect') # Only num_workers=0 and pin_memory=True or num_workers>0 and pin_memory=False is OK, if use num_workers>0 # and pin_memory=True, encounter error: # PyCUDA WARNING: a clean-up operation failed (dead context maybe?) # cuMemFreeHost failed: context is destroyed data_loader = data.DataLoader(dataset, 1, num_workers=4, shuffle=False, pin_memory=False, collate_fn=detect_onnx_collate) ds = len(data_loader) assert ds > 0, 'No .jpg images found.' progress_bar = ProgressBar(40, ds) timer.reset()
for i, COCOID in enumerate(ids_p): data.append({"id": COCO_CLASSES[COCOID], "score": str(class_p[i]), "bbox": box_p[i].tolist()}) json.dump(data, f) print(f'{f.name} created.') f.close() if __name__ == "__main__": with torch.no_grad(): # detect the image if cfg.image is not None: # 待识别图片 dataset = COCODetection(cfg, mode='detect') # Map-Style dataset data_loader = data.DataLoader(dataset, 1, num_workers=0, shuffle=False, pin_memory=True, collate_fn=detect_collate) startTime = time.perf_counter() # img是被正规化的550 * 550图片,img_origin是从cv2中读取的BGR图片 for i, (img, img_origin, img_name) in enumerate(data_loader): if cfg.cuda: img = img.cuda() img_name = img_name.split('.')[0] # only save the filename print("the {} image : {}".format(i, img_name)) print("img size:", img.shape) img_h, img_w = img_origin.shape[0:2]