".index"): print( "#######################Restored all weights ###########################" ) model_saver.restore( sess, configs.restore_model_path_fn(cur_model_iterations)) else: print(configs.restore_model_path_fn(cur_model_iterations)) print("The prev model is not existing!") quit() ##################### First get the depth scale from the subset of the training set ###################### cur_model_depth_scale = my_utils.mAverageCounter(shape=[1]) scale_data_index = my_utils.mRangeVariable( min_val=scale_data_from, max_val=scale_data_to - 1, initial_val=scale_data_from) while not scale_data_index.isEnd(): batch_images_np = np.zeros([ configs.scale_batch_size, configs.img_size, configs.img_size, 3 ], dtype=np.float32) batch_relation_table_np = np.zeros([ configs.scale_batch_size, configs.nJoints, configs.nJoints ], dtype=np.float32) batch_loss_table_log_np = np.zeros([ configs.scale_batch_size, configs.nJoints, configs.nJoints ], dtype=np.float32)
@classmethod def reset(cls): cls.next_flag = 0 @classmethod def get_next(cls): return cls.next_flag @classmethod def get_going(cls): return cls.keep_going if __name__ == "__main__": total_sum = len(os.listdir(os.path.join(data_path, "images"))) data_index = my_utils.mRangeVariable(0, total_sum, -1) wnd_width = 1000 wnd_height = 1000 # proj_mat = vtools.OpenGLUtils.perspective(np.radians(45), float(wnd_width) / wnd_height, 0.1, 10000.0) # view_mat = vtools.OpenGLUtils.lookAt((0, 0, 6), (0, 0, 0), (0, 1, 0)) view_mat = np.identity(4) proj_mat, _ = h36m_camera.get_cam_mat(1, 54138969) visualBox = vtools.mVisualBox( wnd_width, wnd_height, title="ordinal show", btn_callback=m_btn_callback, proj_mat=proj_mat, view_mat=view_mat,