예제 #1
0
def main(params, data_path, save_path):
    conf = ModelConf("cache", params.conf_path, version, params)

    if ProblemTypes[conf.problem_type] == ProblemTypes.sequence_tagging:
        problem = Problem(conf.problem_type,
                          conf.input_types,
                          conf.answer_column_name,
                          source_with_start=True,
                          source_with_end=True,
                          source_with_unk=True,
                          source_with_pad=True,
                          target_with_start=True,
                          target_with_end=True,
                          target_with_unk=True,
                          target_with_pad=True,
                          same_length=True,
                          with_bos_eos=conf.add_start_end_for_seq,
                          tagging_scheme=conf.tagging_scheme,
                          remove_stopwords=conf.remove_stopwords,
                          DBC2SBC=conf.DBC2SBC,
                          unicode_fix=conf.unicode_fix)
    elif ProblemTypes[conf.problem_type] == ProblemTypes.classification \
            or ProblemTypes[conf.problem_type] == ProblemTypes.regression:
        problem = Problem(conf.problem_type,
                          conf.input_types,
                          conf.answer_column_name,
                          source_with_start=True,
                          source_with_end=True,
                          source_with_unk=True,
                          source_with_pad=True,
                          target_with_start=False,
                          target_with_end=False,
                          target_with_unk=False,
                          target_with_pad=False,
                          same_length=True,
                          with_bos_eos=conf.add_start_end_for_seq,
                          remove_stopwords=conf.remove_stopwords,
                          DBC2SBC=conf.DBC2SBC,
                          unicode_fix=conf.unicode_fix)

    if os.path.isfile(conf.problem_path):
        problem.load_problem(conf.problem_path)
        logging.info("Cache loaded!")
        logging.debug("Cache loaded from %s" % conf.problem_path)
    else:
        raise Exception("Cache does not exist!")

    data, length, target = problem.encode(data_path,
                                          conf.file_columns,
                                          conf.input_types,
                                          conf.file_with_col_header,
                                          conf.object_inputs,
                                          conf.answer_column_name,
                                          conf.min_sentence_len,
                                          extra_feature=conf.extra_feature,
                                          max_lengths=conf.max_lengths,
                                          file_format='tsv')
    if not os.path.isdir(os.path.dirname(save_path)):
        os.makedirs(os.path.dirname(save_path))
    dump_to_pkl({'data': data, 'length': length, 'target': target}, save_path)
예제 #2
0
    def save(self, conf, params, problem, emb_matrix):
        if not os.path.exists(conf.cache_dir):
            os.makedirs(conf.cache_dir)
        shutil.copy(params.conf_path,
                    os.path.join(conf.cache_dir, 'conf_cache.json'))
        if self.dictionary_invalid:
            if conf.mode == 'philly' and conf.emb_pkl_path.startswith(
                    '/hdfs/'):
                with HDFSDirectTransferer(
                        conf.problem_path,
                        with_hdfs_command=True) as transferer:
                    transferer.pkl_dump(
                        problem.export_problem(conf.problem_path,
                                               ret_without_save=True))
            else:
                problem.export_problem(conf.problem_path)
            logging.info("[Cache] problem is saved to %s" % conf.problem_path)
            if emb_matrix is not None and conf.emb_pkl_path is not None:
                if conf.mode == 'philly' and conf.emb_pkl_path.startswith(
                        '/hdfs/'):
                    with HDFSDirectTransferer(
                            conf.emb_pkl_path,
                            with_hdfs_command=True) as transferer:
                        transferer.pkl_dump(emb_matrix)
                else:
                    dump_to_pkl(emb_matrix, conf.emb_pkl_path)
            logging.info("Embedding matrix saved to %s" % conf.emb_pkl_path)

        if self.encoding_invalid:
            pass
예제 #3
0
def main(params):
    conf = ModelConf("train", params.conf_path, version, params, mode=params.mode)

    shutil.copy(params.conf_path, conf.save_base_dir)
    logging.info('Configuration file is backed up to %s' % (conf.save_base_dir))

    if ProblemTypes[conf.problem_type] == ProblemTypes.sequence_tagging:
        problem = Problem(conf.problem_type, conf.input_types, conf.answer_column_name,
            source_with_start=True, source_with_end=True, source_with_unk=True, source_with_pad=True,
            target_with_start=True, target_with_end=True, target_with_unk=True, target_with_pad=True, same_length=True,
            with_bos_eos=conf.add_start_end_for_seq, tagging_scheme=conf.tagging_scheme,
            remove_stopwords=conf.remove_stopwords, DBC2SBC=conf.DBC2SBC, unicode_fix=conf.unicode_fix)
    elif ProblemTypes[conf.problem_type] == ProblemTypes.classification \
            or ProblemTypes[conf.problem_type] == ProblemTypes.regression:
        problem = Problem(conf.problem_type, conf.input_types, conf.answer_column_name,
            source_with_start=True, source_with_end=True, source_with_unk=True, source_with_pad=True,
            target_with_start=False, target_with_end=False, target_with_unk=False, target_with_pad=False,
            same_length=False, with_bos_eos=conf.add_start_end_for_seq, remove_stopwords=conf.remove_stopwords,
            DBC2SBC=conf.DBC2SBC, unicode_fix=conf.unicode_fix)
    elif ProblemTypes[conf.problem_type] == ProblemTypes.mrc:
        problem = Problem(conf.problem_type, conf.input_types, conf.answer_column_name,
                          source_with_start=True, source_with_end=True, source_with_unk=True, source_with_pad=True,
                          target_with_start=False, target_with_end=False, target_with_unk=False, target_with_pad=False,
                          same_length=False, with_bos_eos=False, remove_stopwords=conf.remove_stopwords,
                          DBC2SBC=conf.DBC2SBC, unicode_fix=conf.unicode_fix)

    cache_load_flag = False
    if not conf.pretrained_model_path:
        # first time training, load cache if appliable
        if conf.use_cache:
            cache_conf_path = os.path.join(conf.cache_dir, 'conf_cache.json')
            if os.path.isfile(cache_conf_path):
                params_cache = copy.deepcopy(params)
                '''
                for key in vars(params_cache):
                    setattr(params_cache, key, None)
                params_cache.mode = params.mode
                '''
                try:
                    cache_conf = ModelConf('cache', cache_conf_path, version, params_cache)
                except Exception as e:
                    cache_conf = None
                if cache_conf is None or verify_cache(cache_conf, conf) is not True:
                    logging.info('Found cache that is ineffective')
                    if params.mode == 'philly' or params.force is True:
                        renew_option = 'yes'
                    else:
                        renew_option = input('There exists ineffective cache %s for old models. Input "yes" to renew cache and "no" to exit. (default:no): ' % os.path.abspath(conf.cache_dir))
                    if renew_option.lower() != 'yes':
                        exit(0)
                    else:
                        shutil.rmtree(conf.cache_dir)
                        time.sleep(2)  # sleep 2 seconds since the deleting is asynchronous
                        logging.info('Old cache is deleted')
                else:
                    logging.info('Found cache that is appliable to current configuration...')

            elif os.path.isdir(conf.cache_dir):
                renew_option = input('There exists ineffective cache %s for old models. Input "yes" to renew cache and "no" to exit. (default:no): ' % os.path.abspath(conf.cache_dir))
                if renew_option.lower() != 'yes':
                    exit(0)
                else:
                    shutil.rmtree(conf.cache_dir)
                    time.sleep(2)  # Sleep 2 seconds since the deleting is asynchronous
                    logging.info('Old cache is deleted')

            if not os.path.exists(conf.cache_dir):
                os.makedirs(conf.cache_dir)
                shutil.copy(params.conf_path, os.path.join(conf.cache_dir, 'conf_cache.json'))

        # first time training, load problem from cache, and then backup the cache to model_save_dir/.necessary_cache/
        if conf.use_cache and os.path.isfile(conf.problem_path):
            problem.load_problem(conf.problem_path)
            if conf.emb_pkl_path is not None:
                if os.path.isfile(conf.emb_pkl_path):
                    emb_matrix = np.array(load_from_pkl(conf.emb_pkl_path))
                    cache_load_flag = True
                else:
                    if params.mode == 'normal':
                        renew_option = input('The cache is invalid because the embedding matrix does not exist in the cache directory. Input "yes" to renew cache and "no" to exit. (default:no): ')
                        if renew_option.lower() != 'yes':
                            exit(0)
                    else:
                        # by default, renew cache
                        renew_option = 'yes'
            else:
                emb_matrix = None
                cache_load_flag = True
            if cache_load_flag:
                logging.info("Cache loaded!")

        if cache_load_flag is False:
            logging.info("Preprocessing... Depending on your corpus size, this step may take a while.")
            if conf.pretrained_emb_path:
                emb_matrix = problem.build(conf.train_data_path, conf.file_columns, conf.input_types, conf.file_with_col_header,
                                           conf.answer_column_name, word2vec_path=conf.pretrained_emb_path,
                                           word_emb_dim=conf.pretrained_emb_dim, format=conf.pretrained_emb_type,
                                           file_type=conf.pretrained_emb_binary_or_text, involve_all_words=conf.involve_all_words_in_pretrained_emb,
                                           show_progress=True if params.mode == 'normal' else False, max_vocabulary=conf.max_vocabulary,
                                           word_frequency=conf.min_word_frequency)
            else:
                emb_matrix = problem.build(conf.train_data_path, conf.file_columns, conf.input_types, conf.file_with_col_header,
                                           conf.answer_column_name, word2vec_path=None, word_emb_dim=None, format=None,
                                           file_type=None, involve_all_words=conf.involve_all_words_in_pretrained_emb,
                                           show_progress=True if params.mode == 'normal' else False,
                                           max_vocabulary=conf.max_vocabulary, word_frequency=conf.min_word_frequency)

            if conf.mode == 'philly' and conf.emb_pkl_path.startswith('/hdfs/'):
                with HDFSDirectTransferer(conf.problem_path, with_hdfs_command=True) as transferer:
                    transferer.pkl_dump(problem.export_problem(conf.problem_path, ret_without_save=True))
            else:
                problem.export_problem(conf.problem_path)
            if conf.use_cache:
                logging.info("Cache saved to %s" % conf.problem_path)
                if emb_matrix is not None and conf.emb_pkl_path is not None:
                    if conf.mode == 'philly' and conf.emb_pkl_path.startswith('/hdfs/'):
                        with HDFSDirectTransferer(conf.emb_pkl_path, with_hdfs_command=True) as transferer:
                            transferer.pkl_dump(emb_matrix)
                    else:
                        dump_to_pkl(emb_matrix, conf.emb_pkl_path)
                    logging.info("Embedding matrix saved to %s" % conf.emb_pkl_path)
            else:
                logging.debug("Cache saved to %s" % conf.problem_path)

        # Back up the problem.pkl to save_base_dir/.necessary_cache. During test phase, we would load cache from save_base_dir/.necessary_cache/problem.pkl
        cache_bakup_path = os.path.join(conf.save_base_dir, 'necessary_cache/')
        logging.debug('Prepare dir: %s' % cache_bakup_path)
        prepare_dir(cache_bakup_path, True, allow_overwrite=True, clear_dir_if_exist=True)

        shutil.copy(conf.problem_path, cache_bakup_path)
        logging.debug("Problem %s is backed up to %s" % (conf.problem_path, cache_bakup_path))
        if problem.output_dict:
            logging.debug("Problem target cell dict: %s" % (problem.output_dict.cell_id_map))

        if params.make_cache_only:
            logging.info("Finish building cache!")
            return

        vocab_info = dict() # include input_type's vocab_size & init_emd_matrix
        vocab_sizes = problem.get_vocab_sizes()
        for input_cluster in vocab_sizes:
            vocab_info[input_cluster] = dict()
            vocab_info[input_cluster]['vocab_size'] = vocab_sizes[input_cluster]
            # add extra info for char_emb
            if input_cluster.lower() == 'char':
                for key, value in conf.input_types[input_cluster].items():
                    if key != 'cols':
                        vocab_info[input_cluster][key] = value
            if input_cluster == 'word' and emb_matrix is not None:
                vocab_info[input_cluster]['init_weights'] = emb_matrix
            else:
                vocab_info[input_cluster]['init_weights'] = None

        lm = LearningMachine('train', conf, problem, vocab_info=vocab_info, initialize=True, use_gpu=conf.use_gpu)
    else:
        # when finetuning, load previous saved problem
        problem.load_problem(conf.saved_problem_path)
        lm = LearningMachine('train', conf, problem, vocab_info=None, initialize=False, use_gpu=conf.use_gpu)

    if len(conf.metrics_post_check) > 0:
        for metric_to_chk in conf.metrics_post_check:
            metric, target = metric_to_chk.split('@')
            if not problem.output_dict.has_cell(target):
                raise Exception("The target %s of %s does not exist in the training data." % (target, metric_to_chk))

    if conf.pretrained_model_path:
        logging.info('Loading the pretrained model: %s...' % conf.pretrained_model_path)
        lm.load_model(conf.pretrained_model_path)

    loss_conf = conf.loss
    loss_conf['output_layer_id'] = conf.output_layer_id
    loss_conf['answer_column_name'] = conf.answer_column_name
    # loss_fn = eval(loss_conf['type'])(**loss_conf['conf'])
    loss_fn = Loss(**loss_conf)
    if conf.use_gpu is True:
        loss_fn.cuda()

    optimizer = eval(conf.optimizer_name)(lm.model.parameters(), **conf.optimizer_params)

    lm.train(optimizer, loss_fn)

    # test the best model with the best model saved
    lm.load_model(conf.model_save_path)
    if conf.test_data_path is not None:
        test_path = conf.test_data_path
    elif conf.valid_data_path is not None:
        test_path = conf.valid_data_path
    logging.info('Testing the best model saved at %s, with %s' % (conf.model_save_path, test_path))
    if not test_path.endswith('pkl'):
        lm.test(loss_fn, test_path, predict_output_path=conf.predict_output_path)
    else:
        lm.test(loss_fn, test_path)