예제 #1
0
파일: stats_rois.py 프로젝트: thesby/dsb3
            for roi in rois:
                md = max(roi)
                if md > max_dim:
                    max_dim = md
                distance = sum((roi-nodule)**2)**(0.5)
                if distance < min_distance:
                    min_distance = distance
                    closest_roi = roi

            print 'max_dim', max_dim
            print 'n', n
            print 'closest_roi', closest_roi
            print 'min_distance', min_distance
            print 'diameter', diameter_in_mm

            if min_distance < diameter_in_mm:
                n_found += 1
                print 'found', n_found, '/', n_nodules

    print 'n_regions', n_regions            



if __name__ == "__main__":
    # model = segnet1
    set_configuration("configurations/elias/roi_luna_1.py")
    config.data_loader.prepare()

    for set in [VALIDATION]:
        check_nodules(set)
예제 #2
0
        pickle.dump(d_out,
                    open(output_folder + patient_id + ".pkl", "wb"),
                    protocol=pickle.HIGHEST_PROTOCOL)

    print 'n_regions', n_regions
    print 'n_regions_in_mask', n_regions_in_mask


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "config",
        help='configuration to run',
    )
    args = parser.parse_args()
    set_configuration(args.config)

    roi_config, roi_config_name = get_configuration(config.roi_model_config)
    roi_config.data_loader.prepare()

    fpr_config, fpr_config_name = get_configuration(config.fpr_model_config)

    prediction_folder = paths.MODEL_PREDICTIONS_PATH + '/' + config.prediction_loc + '/'

    output_folder = paths.MODEL_PREDICTIONS_PATH + '/' + config.output_name + '/'
    ensure_dir(output_folder)

    x_shared, iter_predict = load_and_build_model(fpr_config,
                                                  config.saved_model_loc)

    for set in [TRAIN, VALIDATION, TEST]: