def main(): print('Called with argument:', args) ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] logger, output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), output_path) assert config.TRAIN.END2END == False prefix = os.path.join(output_path, config.TRAIN.model_prefix) logging.info('########## TRAIN rcnn WITH IMAGENET INIT AND RPN DETECTION') train_rpn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, config.network.pretrained, config.network.pretrained_epoch, prefix, config.TRAIN.begin_epoch, config.TRAIN.end_epoch, train_shared=False, lr=config.TRAIN.lr, lr_step=config.TRAIN.lr_step, logger=logger, output_path=output_path)
def main(): ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] print args logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) # test_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, # ctx, os.path.join(final_output_path, '..', '_'.join([iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), config.TEST.test_epoch, # args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path) if args.vis: assert len(ctx) == 1, "debugger must use 1 gpu" debug_rcnn(config, config.dataset.dataset, 'VID_val_videos_small', config.dataset.root_path, config.dataset.dataset_path, ctx, os.path.join( final_output_path, '..', '_'.join( [iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), config.TEST.test_epoch, args.vis, args.show_gt, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path)
def main(): args = parse_args() print args ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) test_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, os.path.join( final_output_path, '..', '_'.join( [iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), config.TEST.test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path)
def cnr_to_file(infile, mask_file, outdir=None, force=False): if outdir == None: outdir, _ = os.path.split(infile) # Name outfile based on mask file fname = os.path.basename(mask_file).split('.')[0] + '.txt' exists, outfile = make_outfile(outdir, fname) if (exists and force == False): print "{} exists, delete before running or use --force flag.".format(outfile) return # Create logger logname = 'calc_cnr_' + os.path.basename(mask_file).split('.')[0] + '.log' logger = create_logger(outdir, name=logname) logger.info("Image file: {}".format(infile)) logger.info("Mask file: {}".format(mask_file)) # Run error checks error_status = run_error_checks(mask_file) # Get ROI values put into dataframe resultsdf = get_roi_vals(infile, mask_file) # Change slices from 0-based index to 1-based resultsdf.index = resultsdf.index + 1 # Calculate contrast to noise ratio resultsdf['CNR'] = get_cnr(resultsdf['Left_LC'], resultsdf['Right_LC'], resultsdf['PT']) # Save results to file try: resultsdf.to_csv(outfile, index_label="Slice", sep="\t") except IOError: print 'File could not be saved' logger.info("Results saved to: {}".format(outfile)) # Close log files for hndlr in logger.handlers[:]: logger.removeHandler(hndlr) hndlr.close()
def main(): ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] print args logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) # test_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, # ctx, os.path.join(final_output_path, '..', '_'.join([iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), config.TEST.test_epoch, # args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path) debug_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, os.path.join('./model', 'double_drfcn_vid_learn_nms'), 2, args.vis, args.show_gt, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path)
def main(): ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] print(args) if args.sample_stride != -1: config.TEST.sample_stride = args.sample_stride if args.key_frame_interval != -1: config.TEST.KEY_FRAME_INTERVAL = args.key_frame_interval if args.video_shuffle: config.TEST.video_shuffle = args.video_shuffle logger, final_output_path, tb_log_path = create_logger(config.output_path, config.log_path, args.cfg, config.dataset.test_image_set) trained_model = os.path.join(final_output_path, '..', '_'.join( [iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix) test_epoch = config.TEST.test_epoch if args.test_pretrained: trained_model = args.test_pretrained test_epoch = 0 test_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, config.dataset.motion_iou_path, ctx, trained_model, test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path, enable_detailed_eval=config.dataset.enable_detailed_eval)
def main(): # ctx为gpu(...),其中配置项在yaml配置文件中 ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] # print('ctx:', ctx) print args # config.output_path在yaml文件中定义,cfg为对应的yaml文件路径 logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) # config.dataset.dataset=ImageNetVID test_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, config.dataset.motion_iou_path, ctx, os.path.join( final_output_path, '..', '_'.join( [iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), config.TEST.test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path, enable_detailed_eval=config.dataset.enable_detailed_eval)
def main(): #ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] ctx = [mx.gpu(0), mx.gpu(1), mx.gpu(2), mx.gpu(3)] print args #gpu_nums = [int(i) for i in config.gpus.split(',')] gpu_nums = [0, 1, 2, 3] nms_dets = gpu_nms_wrapper(config.TEST.NMS, gpu_nums[0]) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) output_path = os.path.join( final_output_path, '..', '+'.join([iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix) test_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, output_path, config.TEST.test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path, nms_dets=nms_dets, is_docker=args.is_docker)
def main(): ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] print args logger, final_output_path, _ = create_logger(config.output_path, config.log_path, args.cfg, config.dataset.test_image_set) test_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, config.dataset.motion_iou_path, ctx, os.path.join( final_output_path, '..', '_'.join( [iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), config.TEST.test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path, enable_detailed_eval=config.dataset.enable_detailed_eval)
def main(): ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] print args logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) test_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, os.path.join(final_output_path, '..', '_'.join([iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), config.TEST.test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path)
def main(): ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] print args logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) test_rcnn_dota_quadrangle(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, config.TRAIN.model_path, config.TEST.test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path)
def main(): ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] print args logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) demo_rfcn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, os.path.join(final_output_path, '..', '_'.join([iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), config.TEST.test_epoch, args.vis, config.TEST.HAS_RPN, args.thresh, args.use_box_voting)
def main(): ctx = [mx.gpu(int(args.gpu))] print args logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) #arg_params, aux_params = load_param(prefix, epoch, process=False) demo_rfcn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, os.path.join(final_output_path, '..', '_'.join([iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), args.epoch, args.vis, config.TEST.HAS_RPN, args.thresh, args.use_box_voting, args.test_file, args.out_prefix)
def main(): print ('Called with argument:', args) ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] logger, output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), output_path) prefix = os.path.join(output_path, 'rfcn') logging.info('########## TRAIN rfcn WITH IMAGENET INIT AND RPN DETECTION') train_rcnn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, config.network.pretrained, config.network.pretrained_epoch, prefix, config.TRAIN.begin_epoch, config.TRAIN.end_epoch, train_shared=False, lr=config.TRAIN.lr, lr_step=config.TRAIN.lr_step, proposal=config.dataset.proposal, logger=logger)
def main(): import mxnet as mx import mxnet.ndarray as nd nd.zeros((1, 3, 600, 1000), mx.gpu(0), dtype=float) print('GPU ok') ctx = [mx.gpu(0)] print(args) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) test_rcnn(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, os.path.join('model', config.TRAIN.model_prefix), config.TEST.test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path)
def test_deeplab(): epoch = config.TEST.test_epoch ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] image_set = config.dataset.test_image_set root_path = config.dataset.root_path dataset = config.dataset.dataset dataset_path = config.dataset.dataset_path logger, final_output_path = create_logger(config.output_path, args.cfg, image_set) prefix = os.path.join(final_output_path, '..', '_'.join([iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix) # print config pprint.pprint(config) logger.info('testing config:{}\n'.format(pprint.pformat(config))) # load symbol and testing data sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=False) imdb = eval(dataset)(image_set, root_path, dataset_path, result_path=final_output_path) segdb = imdb.gt_segdb() # get test data iter test_data = TestDataLoader(segdb, config=config, batch_size=len(ctx)) # infer shape data_shape_dict = dict(test_data.provide_data_single) sym_instance.infer_shape(data_shape_dict) # load model and check parameters arg_params, aux_params = load_param(prefix, epoch, process=True) sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict, is_train=False) # decide maximum shape data_names = [k[0] for k in test_data.provide_data_single] label_names = ['softmax_label'] max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]] # create predictor predictor = Predictor(sym, data_names, label_names, context=ctx, max_data_shapes=max_data_shape, provide_data=test_data.provide_data, provide_label=test_data.provide_label, arg_params=arg_params, aux_params=aux_params) # start detection pred_eval(predictor, test_data, imdb, vis=args.vis, ignore_cache=args.ignore_cache, logger=logger)
def main(): args = parse_args() print 'Called with argument:', args cfg_path = args.cfg update_config(cfg_path) # create logger logger, output_path = create_logger(config.output_path, cfg_path, config.dataset.image_set) # print config pprint.pprint(config) logger.info('training config: {}\n'.format(pprint.pformat(config))) # train_net(cfg_path, ctx, config.network.pretrained, config.network.pretrained_epoch, # config.TRAIN.model_prefix, config.TRAIN.begin_epoch, config.TRAIN.end_epoch, # config.TRAIN.lr, config.TRAIN.lr_step) train_net(config, output_path, logger)
def main(): ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] print args logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) if config.TRAIN.online: test_rcnn_impression_online(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, os.path.join(config.output_path, config.TRAIN.model_prefix), config.TEST.test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path) else: test_rcnn_impression_offline(config, config.dataset.dataset, config.dataset.test_image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, os.path.join(config.output_path, config.TRAIN.model_prefix), config.TEST.test_epoch, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path)
def main(): args = parse_args() pprint.pprint(config) if config.TEST.HAS_RPN: sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=False) else: sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol_rcnn(config, is_train=False) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) prefix = os.path.join(final_output_path, '..', '_'.join([iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix) arg_params, aux_params = load_param(prefix, config.TEST.test_epoch, process=True) data_names = ['data', 'im_info'] label_names = None mod = mx.mod.Module(symbol=sym, context=mx.gpu(0), data_names=data_names, label_names=label_names) mod.bind(for_training=False, data_shapes=[('data', (1, 3, 1024, 1024)), ('im_info', (1, 3))], label_shapes=None, force_rebind=False) mod.set_params(arg_params=arg_params, aux_params=aux_params, force_init=False) mod.save_checkpoint('test_traffic',0)
def main(): ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] output_dir = "/tmp/res" if not os.path.exists(output_dir): os.mkdir(output_dir) print args logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) sets = "/media/indoordesk/653ce34c-0c14-4427-8029-be7afe6d1989/test_sets/ImageSets" sets = "/data2/test_sets/ImageSets" #for epoc in range(1, 30): maps = [] #for epoc in range(1, 30): for file_name in os.listdir(sets): if "_eval" in file_name: continue logger.info("About to test with images:" + file_name) print ("About to test with images:" + file_name) try: res = test_rcnn(config, config.dataset.dataset, file_name.replace(".txt", ""), config.dataset.root_path, config.dataset.dataset_path, config.dataset.motion_iou_path, ctx, join(final_output_path, '..', '_'.join([iset for iset in config.dataset.image_set.split('+')]), config.TRAIN.model_prefix), epoc, args.vis, args.ignore_cache, args.shuffle, config.TEST.HAS_RPN, config.dataset.proposal, args.thresh, logger=logger, output_path=final_output_path, enable_detailed_eval=config.dataset.enable_detailed_eval) with open(join(output_dir, file_name), "a") as f: f.write('epoc: %s res: %s \n' % (epoc, res)) except Exception as e: logger.error(e) print e print maps
def main(): print('Called with argument:', args) # 配置文件中gpu使用ID ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] # 创建logger logger, output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) # 拷贝对应的symbols代码到输出path中 shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), output_path) # prefix = os.path.join(output_path, 'rfcn') logging.info('########## TRAIN rfcn WITH IMAGENET INIT AND RPN DETECTION') # 训练R-FCN,输入包括配置dict,数据集名字,图像集,数据根目录,数据集路径,训练日志打印频率 train_rcnn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, config.network.pretrained, config.network.pretrained_epoch, prefix, config.TRAIN.begin_epoch, config.TRAIN.end_epoch, train_shared=False, lr=config.TRAIN.lr, lr_step=config.TRAIN.lr_step, proposal=config.dataset.proposal, logger=logger)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): mx.random.seed(3) np.random.seed(3) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_pyramid_level = np.log2(config.network.RPN_FEAT_STRIDE).astype(int) feat_sym = [ sym.get_internals()['rpn_cls_score_p' + str(x) + '_output'] for x in feat_pyramid_level ] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = PyramidAnchorIterator( feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_strides=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=np.inf) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print 'providing maximum shape', max_data_shape, max_label_shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) # sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes # sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() rpn_fg_metric = metric.RPNFGFraction(config) eval_metric = metric.RCNNAccMetric(config) eval_fg_metric = metric.RCNNFGAccuracy(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric ]: eval_metrics.add(child_metric) # callback # batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) # epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, # save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) net = FPNNet(sym, args_pretrained=arg_params, auxes_pretrained=aux_params) # create multi-threaded DataParallel Model. net_parallel = DataParallelModel(net, ctx_list=ctx) # create trainer, # !Important: A trainer can be only created after the function `resnet_ctx` is called. # Please Note that DataParallelModel will call reset_ctx to initialize parameters on gpus. trainer = mx.gluon.Trainer(net.collect_params(), 'sgd', optimizer_params) for epoch in range(begin_epoch, config.TRAIN.end_epoch): train_data.reset() net.hybridize(static_alloc=True, static_shape=False) progress_bar = tqdm.tqdm(total=len(roidb)) for nbatch, data_batch in enumerate(train_data): inputs = [[ x.astype('f').as_in_context(c) for x in d + l ] for c, d, l in zip(ctx, data_batch.data, data_batch.label)] with ag.record(): outputs = net_parallel(*inputs) ag.backward(sum(outputs, ())) trainer.step(1) eval_metrics.update(data_batch.label[0], outputs[0]) if nbatch % 100 == 0: msg = ','.join([ '{}={:.3f}'.format(w, v) for w, v in zip(*eval_metrics.get()) ]) msg += ",lr={}".format(trainer.learning_rate) logger.info(msg) print(msg) eval_metrics.reset() progress_bar.update(len(inputs)) progress_bar.close() net.hybridize(static_alloc=True, static_shape=False) re = ("mAP", 0.0) logger.info(re) save_path = "{}-{}-{}.params".format(prefix, epoch, re[1]) net.collect_params().save(save_path) logger.info("Saved checkpoint to {}.".format(save_path))
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print 'providing maximum shape', max_data_shape, max_label_shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch] lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = {'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None} if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) #sym = eval('get_' + args.network + '_train')(num_classes=config.dataset.NUM_CLASSES) # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] segdbs = [load_gt_segdb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, result_path=final_output_path, flip=config.TRAIN.FLIP) for image_set in image_sets] segdb = merge_segdb(segdbs) # load training data train_data = TrainDataLoader(sym, segdb, config, batch_size=input_batch_size, crop_height=config.TRAIN.CROP_HEIGHT, crop_width=config.TRAIN.CROP_WIDTH, shuffle=config.TRAIN.SHUFFLE, ctx=ctx) # infer max shape max_scale = [(config.TRAIN.CROP_HEIGHT, config.TRAIN.CROP_WIDTH)] max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in max_scale]), max([v[1] for v in max_scale])))] max_label_shape = [('label', (config.TRAIN.BATCH_IMAGES, 1, max([v[0] for v in max_scale]), max([v[1] for v in max_scale])))] # max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape, max_label_shape) print 'providing maximum shape', max_data_shape, max_label_shape # infer shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print 'continue training from ', begin_epoch arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: print pretrained arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weights(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in xrange(batch_size)], max_label_shapes=[max_label_shape for _ in xrange(batch_size)], fixed_param_prefix=fixed_param_prefix) # decide training params # metric fcn_loss_metric = metric.FCNLogLossMetric(config.default.frequent * batch_size) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [fcn_loss_metric]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) epoch_end_callback = mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True) # decide learning rate base_lr = lr lr_factor = 0.1 lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch] lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [int(epoch * len(segdb) / batch_size) for epoch in lr_epoch_diff] print 'lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = {'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None} if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
X, y = load_data(args.name) x_train, y_train = X.astype(gfs.settings.float_type), y.astype( gfs.settings.float_type) print('# Training Data:', x_train.shape[0]) mean_x, std_x = np.mean(x_train), np.std(x_train) mean_y, std_y = np.mean(y_train), np.std(y_train) normalized_x_train = (x_train - mean_x) / std_x normalized_y_train = (y_train - mean_y) / std_y inputs, targets = tf.constant(normalized_x_train), tf.constant( normalized_y_train) x_train_extended = tf.concat( [inputs, inputs - np.min(normalized_x_train) + np.max(normalized_x_train)], axis=0) logger = create_logger('results/time-series/', args.name, __file__) print = logger.info ############################## setup parameters ############################## epochs = 20000 plot_interval = 5000 print_interval = 100 ############################## build NKN ############################## ls = median_distance_local(normalized_x_train).astype('float32') ls[abs(ls) < 1e-6] = 1. input_dim = 1 kernel = dict(nkn=[{ 'name': 'Linear', 'params': {
def train_net(args, ctx, pretrained_dir, pretrained_resnet, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) git_commit_id = commands.getoutput('git rev-parse HEAD') print("Git commit id:", git_commit_id) logger.info('Git commit id: {}'.format(git_commit_id)) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, motion_iou_path=config.dataset.motion_iou_path, flip=config.TRAIN.FLIP, use_philly=args.usePhilly) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, normalize_target=config.network.NORMALIZE_RPN, bbox_mean=config.network.ANCHOR_MEANS, bbox_std=config.network.ANCHOR_STDS) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print('providing maximum shape', max_data_shape, max_label_shape) data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) # load and initialize params params_loaded = False if config.TRAIN.RESUME: arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) print('continue training from ', begin_epoch) logger.info('continue training from ', begin_epoch) params_loaded = True elif config.TRAIN.AUTO_RESUME: for cur_epoch in range(end_epoch - 1, begin_epoch, -1): params_filename = '{}-{:04d}.params'.format(prefix, cur_epoch) states_filename = '{}-{:04d}.states'.format(prefix, cur_epoch) if os.path.exists(params_filename) and os.path.exists( states_filename): begin_epoch = cur_epoch arg_params, aux_params = load_param(prefix, cur_epoch, convert=True) mod._preload_opt_states = states_filename print('auto continue training from {}, {}'.format( params_filename, states_filename)) logger.info('auto continue training from {}, {}'.format( params_filename, states_filename)) params_loaded = True break if not params_loaded: arg_params, aux_params = load_param(os.path.join( pretrained_dir, pretrained_resnet), epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # decide training params # metric eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) if config.TRAIN.JOINT_TRAINING or (not config.TRAIN.LEARN_NMS): rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric]: eval_metrics.add(child_metric) if config.TRAIN.LEARN_NMS: eval_metrics.add(metric.NMSLossMetric(config, 'pos')) eval_metrics.add(metric.NMSLossMetric(config, 'neg')) eval_metrics.add(metric.NMSAccMetric(config)) # callback batch_end_callback = [ callback.Speedometer(train_data.batch_size, frequent=args.frequent) ] if config.USE_PHILLY: total_iter = (end_epoch - begin_epoch) * len(roidb) / input_batch_size progress_frequent = min(args.frequent * 10, 100) batch_end_callback.append( callback.PhillyProgressCallback(total_iter, progress_frequent)) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate # base_lr = lr * len(ctx) * config.TRAIN.BATCH_IMAGES base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): # 创建logger和对应的输出路径 logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) # 特征symbol,从网络sym中获取rpn_cls_score_output feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu # 使能多GPU训练,每一张卡训练一个batch batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training # 加载数据集同时准备训练的imdb,使用+分割不同的图像数据集,比如2007_trainval+2012_trainval image_sets = [iset for iset in config.dataset.image_set.split('+')] # load gt roidb加载gt roidb,根据数据集类型,图像集具体子类,数据集根目录和数据集路径,同时配置相关TRAIN为FLIP来增广数据 roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] # 合并不同的roidb roidb = merge_roidb(roidbs) # 根据配置文件中对应的过滤规则来滤出roi roidb = filter_roidb(roidb, config) # load training data # 加载训练数据,anchor Loader为对应分类和回归的锚点加载,通过对应的roidb,查找对应的正负样本的锚点,该生成器需要参数锚点尺度,ratios和对应的feature的stride train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print('providing maximum shape', max_data_shape, max_label_shape) data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params # 加载并且初始化参数,如果训练中是继续上次的训练,也就是RESUME这一flag设置为True if config.TRAIN.RESUME: print('continue training from ', begin_epoch) # 从前缀和being_epoch中加载RESUME的arg参数和aux参数,同时需要转换为GPU NDArray arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes # 检查相关参数的shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver # 创造求解器 fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) # decide training params # metric # 以下主要是RPN和RCNN相关的一些评价指标 rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) # mxnet中合成的评估指标,可以增加以上所有的评估指标,包括rpn_eval_metrix、rpn_cls_metric、rpn_bbox_metric和rcnn_eval_metric、rcnn_cls_metric、rcnn_bbox_metric eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric ]: eval_metrics.add(child_metric) # callback # batch后的callback回调以及epoch后的callback回调 # batch_end_callback是在训练一定batch_size后进行的相应回调,回调频率为frequent batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) # means和stds,如果BBOX是类无关的,那么means为复制means两个,否则复制数量为NUM_CLASSES means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) # epoch为一个周期结束后的回调 epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate # 以下主要根据不同的学习率调整策略来决定学习率,这里如voc中默认的初始lr为0.0005 base_lr = lr # 学习率调整因子 lr_factor = config.TRAIN.lr_factor # 学习率调整周期,lr_step一般格式为3, 5,表示在3和5周期中进行学习率调整 lr_epoch = [float(epoch) for epoch in lr_step.split(',')] # 如果当前周期大于begin_epoch那么lr_epoch_diff为epoch-begin_epoch lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] print('lr_epoch', lr_epoch, 'begin_epoch', begin_epoch) # 通过当前的epoch来计算当前应该具有的lr lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) # learning rate调整机制,warmup multi factor scheduler预训练多因子调整器 lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer # 优化器参数,包含momentum、wd、lr、lr_scheduler、rescale_grad和clip_gradient optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): print('!!!train_data is not PrefetchingIter!!!') train_data = PrefetchingIter(train_data) # train # 模型训练过程,输入train_data,评估指标包括eval_metrics等一系列指标,每一个epoch结束后进入epoch_end_callback,每一个batch结束后进入batch_end_callback,优化器使用sgd,同时优化参数、输入参数和辅助参数以及begin周期和end周期 mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print('providing maximum shape', max_data_shape, max_label_shape) data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params #if config.TRAIN.RESUME: # print('continue training from ', begin_epoch) # arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) #else: # arg_params, aux_params = load_param(pretrained, epoch, convert=True) # sym_instance.init_weight(config, arg_params, aux_params) print('transfer learning...') # Choose the initialization weights (COCO or UADETRAC or pretrained) #arg_params, aux_params = load_param('/raid10/home_ext/Deformable-ConvNets/output/rfcn_dcn_Shuo_UADTRAC/resnet_v1_101_voc0712_rfcn_dcn_Shuo_UADETRAC/trainlist_full/rfcn_UADTRAC', 5, convert=True) #arg_params, aux_params = load_param('/raid10/home_ext/Deformable-ConvNets/model/rfcn_dcn_coco', 0, convert=True) arg_params, aux_params = load_param( '/raid10/home_ext/Deformable-ConvNets/output/rfcn_dcn_Shuo_AICity/resnet_v1_101_voc0712_rfcn_dcn_Shuo_AICityVOC1080_FreezeCOCO_rpnOnly_all/1080_all/rfcn_AICityVOC1080_FreezeCOCO_rpnOnly_all', 4, convert=True) sym_instance.init_weight_Shuo(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) #freeze parameters using fixed_param_names:list of str para_file = open( '/raid10/home_ext/Deformable-ConvNets/rfcn/symbols/arg_params.txt') para_list = [line.split('<')[0] for line in para_file.readlines()] # para_list.remove('rfcn_cls_weight') # para_list.remove('rfcn_cls_bias') # para_list.remove('rfcn_cls_offset_t_weight') # para_list.remove('rfcn_cls_offset_t_bias') # para_list.remove('res5a_branch2b_offset_weight') para_list.remove('res5a_branch2b_offset_bias') para_list.remove('res5b_branch2b_offset_weight') para_list.remove('res5b_branch2b_offset_bias') para_list.remove('res5c_branch2b_offset_weight') para_list.remove('res5c_branch2b_offset_bias') para_list.remove('conv_new_1_weight') para_list.remove('conv_new_1_bias') para_list.remove('rfcn_bbox_weight') para_list.remove('rfcn_bbox_bias') para_list.remove('rfcn_bbox_offset_t_weight') para_list.remove('rfcn_bbox_offset_t_bias') mod = MutableModule_Shuo( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix, fixed_param_names=para_list) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric ]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
import tensorflow as tf import argparse import numpy as np from bo_functions import Michalewicz, Stybtang, Stybtang_transform from utils.create_logger import create_logger from bayesianOpt import BayesianOptimization from kernels import KernelWrapper # Training settings parser = argparse.ArgumentParser(description='Neural-Kernel-Network') parser.add_argument('--name', type=str, default='sty') parser.add_argument('--kern', type=str, default='rbf') parser.add_argument('--run', type=int, default=-1, help='indx of run') args = parser.parse_args() logger = create_logger('results/bo/' + args.name, 'bo', __file__) logger.info(args) num_iters = 200 num_runs = 10 input_dim = 10 grid_size = 10000 iterations = 5000 all_dim_groups = [] def NKNInfo(dimGroups=None): ls = 0.3 kernel = dict(oracle=[{ 'name': 'RBF', 'params': {
def train_net(args, ctx, pretrained, pretrained_base, pretrained_ec, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_train_symbol(config) # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] segdbs = [ load_gt_segdb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, result_path=final_output_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] segdb = merge_segdb(segdbs) # load training data train_data = TrainDataLoader(sym, segdb, config, batch_size=input_batch_size, crop_height=config.TRAIN.CROP_HEIGHT, crop_width=config.TRAIN.CROP_WIDTH, shuffle=config.TRAIN.SHUFFLE, ctx=ctx) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))), ('data_ref', (config.TRAIN.KEY_INTERVAL - 1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))), ('eq_flag', (1, ))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) print 'providing maximum shape', max_data_shape, max_label_shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: print pretrained arg_params, aux_params = load_param(pretrained, epoch, convert=True) arg_params_base, aux_params_base = load_param(pretrained_base, epoch, convert=True) arg_params.update(arg_params_base) aux_params.update(aux_params_base) arg_params_ec, aux_params_ec = load_param( pretrained_ec, epoch, convert=True, argprefix=config.TRAIN.arg_prefix) arg_params.update(arg_params_ec) aux_params.update(aux_params_ec) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) # decide training params # metric fcn_loss_metric = metric.FCNLogLossMetric(config.default.frequent * batch_size) eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [fcn_loss_metric]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) epoch_end_callback = mx.callback.module_checkpoint( mod, prefix, period=1, save_optimizer_states=True) # decide learning rate base_lr = lr lr_factor = 0.1 lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(segdb) / batch_size) for epoch in lr_epoch_diff ] print 'lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def test_net(args): # init config cfg_path = args.cfg update_config(cfg_path) # test parameters has_rpn = config.TEST.HAS_RPN if not has_rpn: raise NotImplementedError, "Network without RPN is not implemented" # load model model_path = args.model if '.params' not in model_path: model_path += ".params" assert osp.exists(model_path), ("Could not find model path %s" % (model_path)) arg_params, aux_params = load_param_file(model_path, process=True) print("\nLoaded model %s\n" % (model_path)) # gpu stuff ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] # load test dataset cfg_ds = config.dataset ds_name = cfg_ds.dataset ds_path = cfg_ds.dataset_path test_image_set = cfg_ds.test_image_set # logger logger, output_path = create_logger(config.output_path, args.cfg, config.dataset.test_image_set) logger.info('testing config:{}\n'.format(pprint.pformat(config))) if ds_name.lower() == "labelme": # from utils.load_data import load_labelme_gt_sdsdb imdb = labelme(test_image_set, ds_path, cfg_ds.root_path, mask_size=config.MASK_SIZE, binary_thresh=config.BINARY_THRESH, classes=cfg_ds.CLASSES) else: imdb = eval(ds_name)(test_image_set, cfg_ds.root_path, ds_path, result_path=output_path, binary_thresh=config.BINARY_THRESH, mask_size=config.MASK_SIZE) sdsdb = imdb.gt_sdsdb() # load network network = resnet_v1_101_fcis() sym = network.get_symbol(config, is_train=False) # get test data iter test_data = TestLoader(sdsdb, config, batch_size=len(ctx), shuffle=args.shuffle, has_rpn=has_rpn) # infer shape data_shape_dict = dict(test_data.provide_data_single) network.infer_shape(data_shape_dict) network.check_parameter_shapes(arg_params, aux_params, data_shape_dict, is_train=False) # decide maximum shape data_names = [k[0] for k in test_data.provide_data_single] label_names = [] max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]] # # create predictor predictor = Predictor(sym, data_names, label_names, context=ctx, max_data_shapes=max_data_shape, provide_data=test_data.provide_data, provide_label=test_data.provide_label, arg_params=arg_params, aux_params=aux_params) # print(test_data.provide_data_single[0][1]) # print(test_data.provide_label) # start detection pred_eval(predictor, test_data, imdb, config, vis=args.vis, ignore_cache=args.ignore_cache, thresh=args.thresh, logger=logger)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): np.random.seed(0) mx.random.seed(0) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING) # infer max shape # max_dats_shape=['data', (1,3,600,1000)] max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] # max_data_shape=[], max_lable_shape=[] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) logger.info('providing maximum shape'+str(max_data_shape)+" "+str(max_label_shape)) data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) # add by chaojie logger.info("data_sahpe_dict:\n{}".format(pprint.pformat(data_shape_dict))) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) pprint.pprint(sym_instance.arg_shape_dict) logger.info("sym_instance.arg_shape_dict\n") logging.info(pprint.pformat(sym_instance.arg_shape_dict)) #dot = mx.viz.plot_network(sym, node_attrs={'shape': 'rect', 'fixedsize': 'false'}) #dot.render(os.path.join('./output/rcnn/network_vis', config.symbol + '_rcnn')) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch) # decide training params # metric eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric if config.TRAIN.JOINT_TRAINING or (not config.TRAIN.LEARN_NMS): rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric]: eval_metrics.add(child_metric) for child_metric in [eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) if config.TRAIN.LEARN_NMS: eval_metrics.add(metric.NMSLossMetric(config, 'pos')) eval_metrics.add(metric.NMSLossMetric(config, 'neg')) eval_metrics.add(metric.NMSAccMetric(config)) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch] lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = {'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None} if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def alternate_train(args, ctx, pretrained, epoch): # set up logger logger, output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) # basic config begin_epoch = 0 # logging.info('########## TRAIN RPN WITH IMAGENET INIT') rpn1_prefix = os.path.join(output_path, 'rpn1') if not os.path.exists(rpn1_prefix): os.makedirs(rpn1_prefix) config.TRAIN.BATCH_IMAGES = config.TRAIN.ALTERNATE.RPN_BATCH_IMAGES train_rpn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, pretrained, epoch, rpn1_prefix, begin_epoch, config.TRAIN.ALTERNATE.rpn1_epoch, train_shared=False, lr=config.TRAIN.ALTERNATE.rpn1_lr, lr_step=config.TRAIN.ALTERNATE.rpn1_lr_step, logger=logger, output_path=output_path) logging.info('########## GENERATE RPN DETECTION') image_sets = [iset for iset in config.dataset.image_set.split('+')] image_sets.extend( [iset for iset in config.dataset.test_image_set.split('+')]) for image_set in image_sets: test_rpn(config, config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, rpn1_prefix, config.TRAIN.ALTERNATE.rpn1_epoch, vis=False, shuffle=False, thresh=0, logger=logger, output_path=rpn1_prefix) logging.info('########## TRAIN rfcn WITH IMAGENET INIT AND RPN DETECTION') rfcn1_prefix = os.path.join(output_path, 'rfcn1') config.TRAIN.BATCH_IMAGES = config.TRAIN.ALTERNATE.RCNN_BATCH_IMAGES train_rcnn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, pretrained, epoch, rfcn1_prefix, begin_epoch, config.TRAIN.ALTERNATE.rfcn1_epoch, train_shared=False, lr=config.TRAIN.ALTERNATE.rfcn1_lr, lr_step=config.TRAIN.ALTERNATE.rfcn1_lr_step, proposal='rpn', logger=logger, output_path=rpn1_prefix) logging.info('########## TRAIN RPN WITH rfcn INIT') rpn2_prefix = os.path.join(output_path, 'rpn2') if not os.path.exists(rpn2_prefix): os.makedirs(rpn2_prefix) config.TRAIN.BATCH_IMAGES = config.TRAIN.ALTERNATE.RPN_BATCH_IMAGES train_rpn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, rfcn1_prefix, config.TRAIN.ALTERNATE.rpn2_epoch, rpn2_prefix, begin_epoch, config.TRAIN.ALTERNATE.rpn2_epoch, train_shared=True, lr=config.TRAIN.ALTERNATE.rpn2_lr, lr_step=config.TRAIN.ALTERNATE.rpn2_lr_step, logger=logger, output_path=output_path) logging.info('########## GENERATE RPN FIXED_PARAMS_SHAREDDETECTION') image_sets = [iset for iset in config.dataset.image_set.split('+')] for image_set in image_sets: test_rpn(config, config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, rpn2_prefix, config.TRAIN.ALTERNATE.rpn2_epoch, vis=False, shuffle=False, thresh=0, logger=logger, output_path=rpn2_prefix) logger.info('########## COMBINE RPN2 WITH rfcn1') rfcn2_prefix = os.path.join(output_path, 'rfcn2') combine_model(rpn2_prefix, config.TRAIN.ALTERNATE.rpn2_epoch, rfcn1_prefix, config.TRAIN.ALTERNATE.rfcn1_epoch, rfcn2_prefix, 0) logger.info('########## TRAIN rfcn WITH RPN INIT AND DETECTION') config.TRAIN.BATCH_IMAGES = config.TRAIN.ALTERNATE.RCNN_BATCH_IMAGES train_rcnn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, rfcn2_prefix, 0, rfcn2_prefix, begin_epoch, config.TRAIN.ALTERNATE.rfcn2_epoch, train_shared=True, lr=config.TRAIN.ALTERNATE.rfcn2_lr, lr_step=config.TRAIN.ALTERNATE.rfcn2_lr_step, proposal='rpn', logger=logger, output_path=rpn2_prefix) logger.info('########## COMBINE RPN2 WITH rfcn2') final_prefix = os.path.join(output_path, 'final') combine_model(rpn2_prefix, config.TRAIN.ALTERNATE.rpn2_epoch, rfcn2_prefix, config.TRAIN.ALTERNATE.rfcn2_epoch, final_prefix, 0)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): mx.random.seed(3) np.random.seed(3) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) config['final_output_path'] = final_output_path # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_pyramid_level = np.log2(config.network.RPN_FEAT_STRIDE).astype(int) feat_sym = [ sym.get_internals()['rpn_cls_score_p' + str(x) + '_output'] for x in feat_pyramid_level ] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) #leonid: adding semicolumn ";" support to allow several different datasets to be merged datasets = config.dataset.dataset.split(';') image_sets = config.dataset.image_set.split(';') data_paths = config.dataset.dataset_path.split(';') if type(config.dataset.per_category_epoch_max) is str: per_category_epoch_max = [ float(x) for x in config.dataset.per_category_epoch_max.split(';') ] else: per_category_epoch_max = [float(config.dataset.per_category_epoch_max)] roidbs = [] categ_index_offs = 0 if 'classes_list_fname' not in config.dataset: classes_list_fname = '' else: classes_list_fname = config.dataset.classes_list_fname if 'num_ex_per_class' not in config.dataset: num_ex_per_class = '' else: num_ex_per_class = config.dataset.num_ex_per_class for iD, dataset in enumerate(datasets): # load dataset and prepare imdb for training image_sets_cur = [iset for iset in image_sets[iD].split('+')] for image_set in image_sets_cur: cur_roidb, cur_num_classes = load_gt_roidb( dataset, image_set, config.dataset.root_path, data_paths[iD], flip=config.TRAIN.FLIP, per_category_epoch_max=per_category_epoch_max[iD], return_num_classes=True, categ_index_offs=categ_index_offs, classes_list_fname=classes_list_fname, num_ex_per_class=num_ex_per_class) roidbs.append(cur_roidb) categ_index_offs += cur_num_classes # roidbs.extend([ # load_gt_roidb( # dataset, # image_set, # config.dataset.root_path, # data_paths[iD], # flip=config.TRAIN.FLIP, # per_category_epoch_max=per_category_epoch_max[iD]) # for image_set in image_sets]) roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = PyramidAnchorIterator( feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_strides=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=np.inf) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print 'providing maximum shape', max_data_shape, max_label_shape if not config.network.base_net_lock: data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) else: data_shape_dict = dict(train_data.provide_data_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) if config.TRAIN.LOAD_EMBEDDING: import cPickle with open(config.TRAIN.EMBEDDING_FNAME, 'rb') as fid: model_data = cPickle.load(fid) for fcn in ['1', '2', '3']: layer = model_data['dense_' + fcn] weight = ListList2ndarray(layer[0]) bias = mx.nd.array(layer[1]) arg_params['embed_dense_' + fcn + '_weight'] = weight arg_params['embed_dense_' + fcn + '_bias'] = bias # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS alt_fixed_param_prefix = config.network.ALT_FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] if not config.network.base_net_lock: label_names = [k[0] for k in train_data.provide_label_single] else: label_names = [] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix, alt_fixed_param_prefix=alt_fixed_param_prefix) # Leonid: Comment out the following two lines if switching to smaller number of GPUs and resuming training, then after it starts running un-comment back # if config.TRAIN.RESUME: # mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch) #TODO: release this. # decide training params # metric if not config.network.base_net_lock: rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() rpn_fg_metric = metric.RPNFGFraction(config) eval_metric = metric.RCNNAccMetric(config) eval_fg_metric = metric.RCNNFGAccuracy(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric if not config.network.base_net_lock: all_child_metrics = [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric ] else: all_child_metrics = [ rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric ] # all_child_metrics = [rpn_eval_metric, rpn_bbox_metric, rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric] ################################################ ### added / updated by Leonid to support oneshot ################################################ if config.network.EMBEDDING_DIM != 0: if config.network.EMBED_LOSS_ENABLED: all_child_metrics += [ metric.RepresentativesMetric(config, final_output_path) ] # moved from above. JS. all_child_metrics += [metric.EmbedMetric(config)] if config.network.BG_REPS: all_child_metrics += [metric.BGModelMetric(config)] if config.network.REPS_CLS_LOSS: all_child_metrics += [metric.RepsCLSMetric(config)] if config.network.ADDITIONAL_LINEAR_CLS_LOSS: all_child_metrics += [metric.RCNNLinLogLossMetric(config)] if config.network.VAL_FILTER_REGRESS: all_child_metrics += [metric.ValRegMetric(config)] if config.network.SCORE_HIST_REGRESS: all_child_metrics += [metric.ScoreHistMetric(config)] ################################################ for child_metric in all_child_metrics: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'clip_gradient': None } # if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) if args.debug == 1: import copy arg_params_ = copy.deepcopy(arg_params) aux_params_ = copy.deepcopy(aux_params) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch, config=config) if args.debug == 1: t = dictCompare(aux_params_, aux_params) t = dictCompare(arg_params_, arg_params)
def train_net(args, ctx, pretrained, pretrained_flow, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_train_symbol(config) feat_sym = sym.get_internals()['rpn_cls_score_output'] feat_conv_3x3_relu = sym.get_internals()['feat_conv_3x3_relu_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = AnchorLoader(feat_sym, feat_conv_3x3_relu, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, normalize_target=config.network.NORMALIZE_RPN, bbox_mean=config.network.ANCHOR_MEANS, bbox_std=config.network.ANCHOR_STDS) # infer max shape #max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))), # ('data_ref', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))), # ('eq_flag', (1,))] data_shape1 = { 'data_ref': (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])), } _, feat_shape111, _ = feat_conv_3x3_relu.infer_shape(**data_shape1) max_data_shape = [('data_ref', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))), ('eq_flag', (1, )), ('motion_vector', (config.TRAIN.BATCH_IMAGES, 2, int(feat_shape111[0][2]), int(feat_shape111[0][3])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print 'providing maximum shape', max_data_shape, max_label_shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) #arg_params_flow, aux_params_flow = load_param(pretrained_flow, epoch, convert=True) #arg_params.update(arg_params_flow) #aux_params.update(aux_params_flow) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric ]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) print('Start to train model') # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def alternate_train(args, ctx, pretrained, epoch): # set up logger logger, output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) # basic config begin_epoch = 0 # logging.info('########## TRAIN RPN WITH IMAGENET INIT') rpn1_prefix = os.path.join(output_path, 'rpn1') if not os.path.exists(rpn1_prefix): os.makedirs(rpn1_prefix) config.TRAIN.BATCH_IMAGES = config.TRAIN.ALTERNATE.RPN_BATCH_IMAGES train_rpn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, pretrained, epoch, rpn1_prefix, begin_epoch, config.TRAIN.ALTERNATE.rpn1_epoch, train_shared=False, lr=config.TRAIN.ALTERNATE.rpn1_lr, lr_step=config.TRAIN.ALTERNATE.rpn1_lr_step, logger=logger, output_path=output_path) logging.info('########## GENERATE RPN DETECTION') image_sets = [iset for iset in config.dataset.image_set.split('+')] image_sets.extend([iset for iset in config.dataset.test_image_set.split('+')]) for image_set in image_sets: test_rpn(config, config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, rpn1_prefix, config.TRAIN.ALTERNATE.rpn1_epoch, vis=False, shuffle=False, thresh=0, logger=logger, output_path=rpn1_prefix) logging.info('########## TRAIN rfcn WITH IMAGENET INIT AND RPN DETECTION') rfcn1_prefix = os.path.join(output_path, 'rfcn1') config.TRAIN.BATCH_IMAGES = config.TRAIN.ALTERNATE.RCNN_BATCH_IMAGES train_rcnn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, pretrained, epoch, rfcn1_prefix, begin_epoch, config.TRAIN.ALTERNATE.rfcn1_epoch, train_shared=False, lr=config.TRAIN.ALTERNATE.rfcn1_lr, lr_step=config.TRAIN.ALTERNATE.rfcn1_lr_step, proposal='rpn', logger=logger, output_path=rpn1_prefix) logging.info('########## TRAIN RPN WITH rfcn INIT') rpn2_prefix = os.path.join(output_path, 'rpn2') if not os.path.exists(rpn2_prefix): os.makedirs(rpn2_prefix) config.TRAIN.BATCH_IMAGES = config.TRAIN.ALTERNATE.RPN_BATCH_IMAGES train_rpn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, rfcn1_prefix, config.TRAIN.ALTERNATE.rpn2_epoch, rpn2_prefix, begin_epoch, config.TRAIN.ALTERNATE.rpn2_epoch, train_shared=True, lr=config.TRAIN.ALTERNATE.rpn2_lr, lr_step=config.TRAIN.ALTERNATE.rpn2_lr_step, logger=logger, output_path=output_path) logging.info('########## GENERATE RPN DETECTION') image_sets = [iset for iset in config.dataset.image_set.split('+')] for image_set in image_sets: test_rpn(config, config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, ctx, rpn2_prefix, config.TRAIN.ALTERNATE.rpn2_epoch, vis=False, shuffle=False, thresh=0, logger=logger, output_path=rpn2_prefix) logger.info('########## COMBINE RPN2 WITH rfcn1') rfcn2_prefix = os.path.join(output_path, 'rfcn2') combine_model(rpn2_prefix, config.TRAIN.ALTERNATE.rpn2_epoch, rfcn1_prefix, config.TRAIN.ALTERNATE.rfcn1_epoch, rfcn2_prefix, 0) logger.info('########## TRAIN rfcn WITH RPN INIT AND DETECTION') config.TRAIN.BATCH_IMAGES = config.TRAIN.ALTERNATE.RCNN_BATCH_IMAGES train_rcnn(config, config.dataset.dataset, config.dataset.image_set, config.dataset.root_path, config.dataset.dataset_path, args.frequent, config.default.kvstore, config.TRAIN.FLIP, config.TRAIN.SHUFFLE, config.TRAIN.RESUME, ctx, rfcn2_prefix, 0, rfcn2_prefix, begin_epoch, config.TRAIN.ALTERNATE.rfcn2_epoch, train_shared=True, lr=config.TRAIN.ALTERNATE.rfcn2_lr, lr_step=config.TRAIN.ALTERNATE.rfcn2_lr_step, proposal='rpn', logger=logger, output_path=rpn2_prefix) logger.info('########## COMBINE RPN2 WITH rfcn2') final_prefix = os.path.join(output_path, 'final') combine_model(rpn2_prefix, config.TRAIN.ALTERNATE.rpn2_epoch, rfcn2_prefix, config.TRAIN.ALTERNATE.rfcn2_epoch, final_prefix, 0)