def metric(params, info, pre_res, **kwargs): res = params_handler(params, info, pre_res) # load node number node_path=os.path.join(DATA_PATH, params["data"], "node.txt") node_file=open(node_path, 'r') nodes=node_file.readlines() node_num=len(nodes) node_file.close() # load embeddings if params["file_type"] == "txt": embedding_path=os.path.join(DATA_PATH, "experiment", params["embeddings_file"]) X = dh.load_embedding(embedding_path, params["file_type"], node_num) else: embedding_path = os.path.join(DATA_PATH, "experiment", params["embeddings_file"]) X = dh.load_embedding(embedding_path, params["file_type"],node_num) # results include: accuracy, micro f1, macro f1 metric_res = classification(X, params) # insert into res for k, v in metric_res.items(): res[k] = v return res
def metric(params, info, pre_res, **kwargs): res = params_handler(params, info) # load embeddings embedding_path = os.path.join(DATA_PATH, "experiment", params["embeddings_file"]) X = dh.load_embedding(embedding_path, params["file_type"]) # results include: accuracy, micro f1, macro f1 metric_res = visualization(X, params) # insert into res for k, v in metric_res.items(): res[k] = v return res